| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import re
- from abc import ABC
- from api.db import LLMType
- from api.db.services.llm_service import LLMBundle
- from agent.component import GenerateParam, Generate
- from agent.settings import DEBUG
-
-
- class KeywordExtractParam(GenerateParam):
- """
- Define the KeywordExtract component parameters.
- """
-
- def __init__(self):
- super().__init__()
- self.top_n = 1
-
- def check(self):
- super().check()
- self.check_positive_integer(self.top_n, "Top N")
-
- def get_prompt(self):
- self.prompt = """
- - Role: You're a question analyzer.
- - Requirements:
- - Summarize user's question, and give top %s important keyword/phrase.
- - Use comma as a delimiter to separate keywords/phrases.
- - Answer format: (in language of user's question)
- - keyword:
- """ % self.top_n
- return self.prompt
-
-
- class KeywordExtract(Generate, ABC):
- component_name = "KeywordExtract"
-
- def _run(self, history, **kwargs):
- q = ""
- for r, c in self._canvas.history[::-1]:
- if r == "user":
- q += c
- break
-
- chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
- ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
- self._param.gen_conf())
-
- ans = re.sub(r".*keyword:", "", ans).strip()
- if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::")
- return KeywordExtract.be_output(ans)
|