| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from abc import ABC
-
- import pandas as pd
-
- from api.db import LLMType
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db.services.llm_service import LLMBundle
- from api.settings import retrievaler
- from agent.component.base import ComponentBase, ComponentParamBase
-
-
- class CiteParam(ComponentParamBase):
-
- """
- Define the Retrieval component parameters.
- """
- def __init__(self):
- super().__init__()
- self.cite_sources = []
-
- def check(self):
- self.check_empty(self.cite_source, "Please specify where you want to cite from.")
-
-
- class Cite(ComponentBase, ABC):
- component_name = "Cite"
-
- def _run(self, history, **kwargs):
- input = "\n- ".join(self.get_input()["content"])
- sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
- query = []
- for role, cnt in history[::-1][:self._param.message_history_window_size]:
- if role != "user":continue
- query.append(cnt)
- query = "\n".join(query)
-
- kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
- if not kbs:
- raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
- embd_nms = list(set([kb.embd_id for kb in kbs]))
- assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
-
- embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
-
- rerank_mdl = None
- if self._param.rerank_id:
- rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
-
- kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
- 1, self._param.top_n,
- self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
- aggs=False, rerank_mdl=rerank_mdl)
-
- if not kbinfos["chunks"]: return pd.DataFrame()
- df = pd.DataFrame(kbinfos["chunks"])
- df["content"] = df["content_with_weight"]
- del df["content_with_weight"]
- return df
-
|