| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from zhipuai import ZhipuAI
- from dashscope import Generation
- from abc import ABC
- from openai import OpenAI
- import openai
- from ollama import Client
- from volcengine.maas.v2 import MaasService
- from rag.nlp import is_english
- from rag.utils import num_tokens_from_string
-
-
- class Base(ABC):
- def __init__(self, key, model_name, base_url):
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- **gen_conf)
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except openai.APIError as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- stream=True,
- **gen_conf)
- for resp in response:
- if not resp.choices or not resp.choices[0].delta.content:continue
- ans += resp.choices[0].delta.content
- total_tokens += 1
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
-
- except openai.APIError as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class GptTurbo(Base):
- def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
- if not base_url: base_url="https://api.openai.com/v1"
- super().__init__(key, model_name, base_url)
-
-
- class MoonshotChat(Base):
- def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
- if not base_url: base_url="https://api.moonshot.cn/v1"
- super().__init__(key, model_name, base_url)
-
-
- class XinferenceChat(Base):
- def __init__(self, key=None, model_name="", base_url=""):
- key = "xxx"
- super().__init__(key, model_name, base_url)
-
-
- class DeepSeekChat(Base):
- def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
- if not base_url: base_url="https://api.deepseek.com/v1"
- super().__init__(key, model_name, base_url)
-
-
- class BaiChuanChat(Base):
- def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
- if not base_url:
- base_url = "https://api.baichuan-ai.com/v1"
- super().__init__(key, model_name, base_url)
-
- @staticmethod
- def _format_params(params):
- return {
- "temperature": params.get("temperature", 0.3),
- "max_tokens": params.get("max_tokens", 2048),
- "top_p": params.get("top_p", 0.85),
- }
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- extra_body={
- "tools": [{
- "type": "web_search",
- "web_search": {
- "enable": True,
- "search_mode": "performance_first"
- }
- }]
- },
- **self._format_params(gen_conf))
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except openai.APIError as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- extra_body={
- "tools": [{
- "type": "web_search",
- "web_search": {
- "enable": True,
- "search_mode": "performance_first"
- }
- }]
- },
- stream=True,
- **self._format_params(gen_conf))
- for resp in response:
- if resp.choices[0].finish_reason == "stop":
- if not resp.choices[0].delta.content:
- continue
- total_tokens = resp.usage.get('total_tokens', 0)
- if not resp.choices[0].delta.content:
- continue
- ans += resp.choices[0].delta.content
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class QWenChat(Base):
- def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
- import dashscope
- dashscope.api_key = key
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- from http import HTTPStatus
- if system:
- history.insert(0, {"role": "system", "content": system})
- response = Generation.call(
- self.model_name,
- messages=history,
- result_format='message',
- **gen_conf
- )
- ans = ""
- tk_count = 0
- if response.status_code == HTTPStatus.OK:
- ans += response.output.choices[0]['message']['content']
- tk_count += response.usage.total_tokens
- if response.output.choices[0].get("finish_reason", "") == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, tk_count
-
- return "**ERROR**: " + response.message, tk_count
-
- def chat_streamly(self, system, history, gen_conf):
- from http import HTTPStatus
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- tk_count = 0
- try:
- response = Generation.call(
- self.model_name,
- messages=history,
- result_format='message',
- stream=True,
- **gen_conf
- )
- for resp in response:
- if resp.status_code == HTTPStatus.OK:
- ans = resp.output.choices[0]['message']['content']
- tk_count = resp.usage.total_tokens
- if resp.output.choices[0].get("finish_reason", "") == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
- else:
- yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**"
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
-
- class ZhipuChat(Base):
- def __init__(self, key, model_name="glm-3-turbo", **kwargs):
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- **gen_conf
- )
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
- ans = ""
- tk_count = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- stream=True,
- **gen_conf
- )
- for resp in response:
- if not resp.choices[0].delta.content:continue
- delta = resp.choices[0].delta.content
- ans += delta
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- tk_count = resp.usage.total_tokens
- if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
-
- class OllamaChat(Base):
- def __init__(self, key, model_name, **kwargs):
- self.client = Client(host=kwargs["base_url"])
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- options = {}
- if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
- if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
- if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
- if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
- response = self.client.chat(
- model=self.model_name,
- messages=history,
- options=options,
- keep_alive=-1
- )
- ans = response["message"]["content"].strip()
- return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- options = {}
- if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
- if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
- if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
- if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
- ans = ""
- try:
- response = self.client.chat(
- model=self.model_name,
- messages=history,
- stream=True,
- options=options,
- keep_alive=-1
- )
- for resp in response:
- if resp["done"]:
- yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
- ans += resp["message"]["content"]
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
- yield 0
-
-
- class LocalLLM(Base):
- class RPCProxy:
- def __init__(self, host, port):
- self.host = host
- self.port = int(port)
- self.__conn()
-
- def __conn(self):
- from multiprocessing.connection import Client
- self._connection = Client(
- (self.host, self.port), authkey=b'infiniflow-token4kevinhu')
-
- def __getattr__(self, name):
- import pickle
-
- def do_rpc(*args, **kwargs):
- for _ in range(3):
- try:
- self._connection.send(
- pickle.dumps((name, args, kwargs)))
- return pickle.loads(self._connection.recv())
- except Exception as e:
- self.__conn()
- raise Exception("RPC connection lost!")
-
- return do_rpc
-
- def __init__(self, key, model_name="glm-3-turbo"):
- self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- ans = self.client.chat(
- history,
- gen_conf
- )
- return ans, num_tokens_from_string(ans)
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- token_count = 0
- answer = ""
- try:
- for ans in self.client.chat_streamly(history, gen_conf):
- answer += ans
- token_count += 1
- yield answer
- except Exception as e:
- yield answer + "\n**ERROR**: " + str(e)
-
- yield token_count
-
-
- class VolcEngineChat(Base):
- def __init__(self, key, model_name, base_url):
- """
- Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
- Assemble ak, sk, ep_id into api_key, store it as a dictionary type, and parse it for use
- model_name is for display only
- """
- self.client = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
- self.volc_ak = eval(key).get('volc_ak', '')
- self.volc_sk = eval(key).get('volc_sk', '')
- self.client.set_ak(self.volc_ak)
- self.client.set_sk(self.volc_sk)
- self.model_name = eval(key).get('ep_id', '')
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- req = {
- "parameters": {
- "min_new_tokens": gen_conf.get("min_new_tokens", 1),
- "top_k": gen_conf.get("top_k", 0),
- "max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
- "temperature": gen_conf.get("temperature", 0.1),
- "max_new_tokens": gen_conf.get("max_tokens", 1000),
- "top_p": gen_conf.get("top_p", 0.3),
- },
- "messages": history
- }
- response = self.client.chat(self.model_name, req)
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- tk_count = 0
- try:
- req = {
- "parameters": {
- "min_new_tokens": gen_conf.get("min_new_tokens", 1),
- "top_k": gen_conf.get("top_k", 0),
- "max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
- "temperature": gen_conf.get("temperature", 0.1),
- "max_new_tokens": gen_conf.get("max_tokens", 1000),
- "top_p": gen_conf.get("top_p", 0.3),
- },
- "messages": history
- }
- stream = self.client.stream_chat(self.model_name, req)
- for resp in stream:
- if not resp.choices[0].message.content:
- continue
- ans += resp.choices[0].message.content
- if resp.choices[0].finish_reason == "stop":
- tk_count = resp.usage.total_tokens
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
- yield tk_count
|