| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from openai.lib.azure import AzureOpenAI
- from zhipuai import ZhipuAI
- import io
- from abc import ABC
- from ollama import Client
- from openai import OpenAI
- import os
- import json
- from rag.utils import num_tokens_from_string
- import base64
- import re
-
- class Base(ABC):
- def __init__(self, key, model_name):
- pass
-
- def transcription(self, audio, **kwargs):
- transcription = self.client.audio.transcriptions.create(
- model=self.model_name,
- file=audio,
- response_format="text"
- )
- return transcription.text.strip(), num_tokens_from_string(transcription.text.strip())
-
- def audio2base64(self,audio):
- if isinstance(audio, bytes):
- return base64.b64encode(audio).decode("utf-8")
- if isinstance(audio, io.BytesIO):
- return base64.b64encode(audio.getvalue()).decode("utf-8")
- raise TypeError("The input audio file should be in binary format.")
-
-
- class GPTSeq2txt(Base):
- def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"):
- if not base_url: base_url = "https://api.openai.com/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
-
- class QWenSeq2txt(Base):
- def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs):
- import dashscope
- dashscope.api_key = key
- self.model_name = model_name
-
- def transcription(self, audio, format):
- from http import HTTPStatus
- from dashscope.audio.asr import Recognition
-
- recognition = Recognition(model=self.model_name,
- format=format,
- sample_rate=16000,
- callback=None)
- result = recognition.call(audio)
-
- ans = ""
- if result.status_code == HTTPStatus.OK:
- for sentence in result.get_sentence():
- ans += sentence.text.decode('utf-8') + '\n'
- return ans, num_tokens_from_string(ans)
-
- return "**ERROR**: " + result.message, 0
-
-
- class OllamaSeq2txt(Base):
- def __init__(self, key, model_name, lang="Chinese", **kwargs):
- self.client = Client(host=kwargs["base_url"])
- self.model_name = model_name
- self.lang = lang
-
-
- class AzureSeq2txt(Base):
- def __init__(self, key, model_name, lang="Chinese", **kwargs):
- self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
- self.model_name = model_name
- self.lang = lang
-
-
- class XinferenceSeq2txt(Base):
- def __init__(self, key, model_name="", base_url=""):
- self.client = OpenAI(api_key="xxx", base_url=base_url)
- self.model_name = model_name
-
-
- class TencentCloudSeq2txt(Base):
- def __init__(
- self, key, model_name="16k_zh", base_url="https://asr.tencentcloudapi.com"
- ):
- from tencentcloud.common import credential
- from tencentcloud.asr.v20190614 import asr_client
-
- key = json.loads(key)
- sid = key.get("tencent_cloud_sid", "")
- sk = key.get("tencent_cloud_sk", "")
- cred = credential.Credential(sid, sk)
- self.client = asr_client.AsrClient(cred, "")
- self.model_name = model_name
-
- def transcription(self, audio, max_retries=60, retry_interval=5):
- from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
- TencentCloudSDKException,
- )
- from tencentcloud.asr.v20190614 import models
- import time
-
- b64 = self.audio2base64(audio)
- try:
- # dispatch disk
- req = models.CreateRecTaskRequest()
- params = {
- "EngineModelType": self.model_name,
- "ChannelNum": 1,
- "ResTextFormat": 0,
- "SourceType": 1,
- "Data": b64,
- }
- req.from_json_string(json.dumps(params))
- resp = self.client.CreateRecTask(req)
-
- # loop query
- req = models.DescribeTaskStatusRequest()
- params = {"TaskId": resp.Data.TaskId}
- req.from_json_string(json.dumps(params))
- retries = 0
- while retries < max_retries:
- resp = self.client.DescribeTaskStatus(req)
- if resp.Data.StatusStr == "success":
- text = re.sub(
- r"\[\d+:\d+\.\d+,\d+:\d+\.\d+\]\s*", "", resp.Data.Result
- ).strip()
- return text, num_tokens_from_string(text)
- elif resp.Data.StatusStr == "failed":
- return (
- "**ERROR**: Failed to retrieve speech recognition results.",
- 0,
- )
- else:
- time.sleep(retry_interval)
- retries += 1
- return "**ERROR**: Max retries exceeded. Task may still be processing.", 0
-
- except TencentCloudSDKException as e:
- return "**ERROR**: " + str(e), 0
- except Exception as e:
- return "**ERROR**: " + str(e), 0
|