Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

query.py 8.5KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import json
  18. import re
  19. from rag.utils.doc_store_conn import MatchTextExpr
  20. from rag.nlp import rag_tokenizer, term_weight, synonym
  21. class FulltextQueryer:
  22. def __init__(self):
  23. self.tw = term_weight.Dealer()
  24. self.syn = synonym.Dealer()
  25. self.query_fields = [
  26. "title_tks^10",
  27. "title_sm_tks^5",
  28. "important_kwd^30",
  29. "important_tks^20",
  30. "question_tks^20",
  31. "content_ltks^2",
  32. "content_sm_ltks",
  33. ]
  34. @staticmethod
  35. def subSpecialChar(line):
  36. return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|\+~\^])", r"\\\1", line).strip()
  37. @staticmethod
  38. def isChinese(line):
  39. arr = re.split(r"[ \t]+", line)
  40. if len(arr) <= 3:
  41. return True
  42. e = 0
  43. for t in arr:
  44. if not re.match(r"[a-zA-Z]+$", t):
  45. e += 1
  46. return e * 1.0 / len(arr) >= 0.7
  47. @staticmethod
  48. def rmWWW(txt):
  49. patts = [
  50. (
  51. r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀|谁|哪位|哪个)是*",
  52. "",
  53. ),
  54. (r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
  55. (r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down|of) ", " ")
  56. ]
  57. for r, p in patts:
  58. txt = re.sub(r, p, txt, flags=re.IGNORECASE)
  59. return txt
  60. def question(self, txt, tbl="qa", min_match:float=0.6):
  61. txt = re.sub(
  62. r"[ :\r\n\t,,。??/`!!&\^%%()^\[\]]+",
  63. " ",
  64. rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())),
  65. ).strip()
  66. txt = FulltextQueryer.rmWWW(txt)
  67. if not self.isChinese(txt):
  68. txt = FulltextQueryer.rmWWW(txt)
  69. tks = rag_tokenizer.tokenize(txt).split()
  70. keywords = [t for t in tks if t]
  71. tks_w = self.tw.weights(tks, preprocess=False)
  72. tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
  73. tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk]
  74. tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
  75. syns = []
  76. for tk, w in tks_w:
  77. syn = self.syn.lookup(tk)
  78. syn = rag_tokenizer.tokenize(" ".join(syn)).split()
  79. keywords.extend(syn)
  80. syn = ["\"{}\"^{:.4f}".format(s, w / 4.) for s in syn]
  81. syns.append(" ".join(syn))
  82. q = ["({}^{:.4f}".format(tk, w) + " {})".format(syn) for (tk, w), syn in zip(tks_w, syns) if tk]
  83. for i in range(1, len(tks_w)):
  84. q.append(
  85. '"%s %s"^%.4f'
  86. % (
  87. tks_w[i - 1][0],
  88. tks_w[i][0],
  89. max(tks_w[i - 1][1], tks_w[i][1]) * 2,
  90. )
  91. )
  92. if not q:
  93. q.append(txt)
  94. query = " ".join(q)
  95. return MatchTextExpr(
  96. self.query_fields, query, 100
  97. ), keywords
  98. def need_fine_grained_tokenize(tk):
  99. if len(tk) < 3:
  100. return False
  101. if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
  102. return False
  103. return True
  104. txt = FulltextQueryer.rmWWW(txt)
  105. qs, keywords = [], []
  106. for tt in self.tw.split(txt)[:256]: # .split():
  107. if not tt:
  108. continue
  109. keywords.append(tt)
  110. twts = self.tw.weights([tt])
  111. syns = self.syn.lookup(tt)
  112. if syns and len(keywords) < 32:
  113. keywords.extend(syns)
  114. logging.debug(json.dumps(twts, ensure_ascii=False))
  115. tms = []
  116. for tk, w in sorted(twts, key=lambda x: x[1] * -1):
  117. sm = (
  118. rag_tokenizer.fine_grained_tokenize(tk).split()
  119. if need_fine_grained_tokenize(tk)
  120. else []
  121. )
  122. sm = [
  123. re.sub(
  124. r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
  125. "",
  126. m,
  127. )
  128. for m in sm
  129. ]
  130. sm = [FulltextQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
  131. sm = [m for m in sm if len(m) > 1]
  132. if len(keywords) < 32:
  133. keywords.append(re.sub(r"[ \\\"']+", "", tk))
  134. keywords.extend(sm)
  135. tk_syns = self.syn.lookup(tk)
  136. tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns]
  137. if len(keywords) < 32:
  138. keywords.extend([s for s in tk_syns if s])
  139. tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s]
  140. tk_syns = [f"\"{s}\"" if s.find(" ")>0 else s for s in tk_syns]
  141. if len(keywords) >= 32:
  142. break
  143. tk = FulltextQueryer.subSpecialChar(tk)
  144. if tk.find(" ") > 0:
  145. tk = '"%s"' % tk
  146. if tk_syns:
  147. tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns)
  148. if sm:
  149. tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm))
  150. if tk.strip():
  151. tms.append((tk, w))
  152. tms = " ".join([f"({t})^{w}" for t, w in tms])
  153. if len(twts) > 1:
  154. tms += ' ("%s"~2)^1.5' % rag_tokenizer.tokenize(tt)
  155. if re.match(r"[0-9a-z ]+$", tt):
  156. tms = f'("{tt}" OR "%s")' % rag_tokenizer.tokenize(tt)
  157. syns = " OR ".join(
  158. [
  159. '"%s"'
  160. % rag_tokenizer.tokenize(FulltextQueryer.subSpecialChar(s))
  161. for s in syns
  162. ]
  163. )
  164. if syns:
  165. tms = f"({tms})^5 OR ({syns})^0.7"
  166. qs.append(tms)
  167. if qs:
  168. query = " OR ".join([f"({t})" for t in qs if t])
  169. return MatchTextExpr(
  170. self.query_fields, query, 100, {"minimum_should_match": min_match}
  171. ), keywords
  172. return None, keywords
  173. def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, vtweight=0.7):
  174. from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
  175. import numpy as np
  176. sims = CosineSimilarity([avec], bvecs)
  177. tksim = self.token_similarity(atks, btkss)
  178. return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]
  179. def token_similarity(self, atks, btkss):
  180. def toDict(tks):
  181. d = {}
  182. if isinstance(tks, str):
  183. tks = tks.split()
  184. for t, c in self.tw.weights(tks, preprocess=False):
  185. if t not in d:
  186. d[t] = 0
  187. d[t] += c
  188. return d
  189. atks = toDict(atks)
  190. btkss = [toDict(tks) for tks in btkss]
  191. return [self.similarity(atks, btks) for btks in btkss]
  192. def similarity(self, qtwt, dtwt):
  193. if isinstance(dtwt, type("")):
  194. dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt), preprocess=False)}
  195. if isinstance(qtwt, type("")):
  196. qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt), preprocess=False)}
  197. s = 1e-9
  198. for k, v in qtwt.items():
  199. if k in dtwt:
  200. s += v # * dtwt[k]
  201. q = 1e-9
  202. for k, v in qtwt.items():
  203. q += v
  204. return s / q