| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 | #
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
import copy
import re
from api.db import ParserType
from io import BytesIO
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, bullets_category, title_frequency, tokenize_chunks, docx_question_level
from rag.utils import num_tokens_from_string
from deepdoc.parser import PdfParser, PlainParser, DocxParser
from docx import Document
from PIL import Image
class Pdf(PdfParser):
    def __init__(self):
        self.model_speciess = ParserType.MANUAL.value
        super().__init__()
    def __call__(self, filename, binary=None, from_page=0,
                 to_page=100000, zoomin=3, callback=None):
        from timeit import default_timer as timer
        start = timer()
        callback(msg="OCR started")
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback
        )
        callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
        # for bb in self.boxes:
        #    for b in bb:
        #        print(b)
        logging.debug("OCR: {}".format(timer() - start))
        start = timer()
        self._layouts_rec(zoomin)
        callback(0.65, "Layout analysis ({:.2f}s)".format(timer() - start))
        logging.debug("layouts: {}".format(timer() - start))
        start = timer()
        self._table_transformer_job(zoomin)
        callback(0.67, "Table analysis ({:.2f}s)".format(timer() - start))
        start = timer()
        self._text_merge()
        tbls = self._extract_table_figure(True, zoomin, True, True)
        self._concat_downward()
        self._filter_forpages()
        callback(0.68, "Text merged ({:.2f}s)".format(timer() - start))
        # clean mess
        for b in self.boxes:
            b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
        return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
                for i, b in enumerate(self.boxes)], tbls
class Docx(DocxParser):
    def __init__(self):
        pass
    def get_picture(self, document, paragraph):
        img = paragraph._element.xpath('.//pic:pic')
        if not img:
            return None
        img = img[0]
        embed = img.xpath('.//a:blip/@r:embed')[0]
        related_part = document.part.related_parts[embed]
        image = related_part.image
        image = Image.open(BytesIO(image.blob))
        return image
    def concat_img(self, img1, img2):
        if img1 and not img2:
            return img1
        if not img1 and img2:
            return img2
        if not img1 and not img2:
            return None
        width1, height1 = img1.size
        width2, height2 = img2.size
        new_width = max(width1, width2)
        new_height = height1 + height2
        new_image = Image.new('RGB', (new_width, new_height))
        new_image.paste(img1, (0, 0))
        new_image.paste(img2, (0, height1))
        return new_image
    def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
        self.doc = Document(
            filename) if not binary else Document(BytesIO(binary))
        pn = 0
        last_answer, last_image = "", None
        question_stack, level_stack = [], []
        ti_list = []
        for p in self.doc.paragraphs:
            if pn > to_page:
                break
            question_level, p_text = 0, ''
            if from_page <= pn < to_page and p.text.strip():
                question_level, p_text = docx_question_level(p)
            if not question_level or question_level > 6: # not a question
                last_answer = f'{last_answer}\n{p_text}'
                current_image = self.get_picture(self.doc, p)
                last_image = self.concat_img(last_image, current_image)
            else:   # is a question
                if last_answer or last_image:
                    sum_question = '\n'.join(question_stack)
                    if sum_question:
                        ti_list.append((f'{sum_question}\n{last_answer}', last_image))
                    last_answer, last_image = '', None
                i = question_level
                while question_stack and i <= level_stack[-1]:
                    question_stack.pop()
                    level_stack.pop()
                question_stack.append(p_text)
                level_stack.append(question_level)
            for run in p.runs:
                if 'lastRenderedPageBreak' in run._element.xml:
                    pn += 1
                    continue
                if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
                    pn += 1
        if last_answer:
            sum_question = '\n'.join(question_stack)
            if sum_question:
                ti_list.append((f'{sum_question}\n{last_answer}', last_image))
                
        tbls = []
        for tb in self.doc.tables:
            html= "<table>"
            for r in tb.rows:
                html += "<tr>"
                i = 0
                while i < len(r.cells):
                    span = 1
                    c = r.cells[i]
                    for j in range(i+1, len(r.cells)):
                        if c.text == r.cells[j].text:
                            span += 1
                            i = j
                    i += 1
                    html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
                html += "</tr>"
            html += "</table>"
            tbls.append(((None, html), ""))
        return ti_list, tbls
def chunk(filename, binary=None, from_page=0, to_page=100000,
          lang="Chinese", callback=None, **kwargs):
    """
        Only pdf is supported.
    """
    pdf_parser = None
    doc = {
        "docnm_kwd": filename
    }
    doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
    doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
    # is it English
    eng = lang.lower() == "english"  # pdf_parser.is_english
    if re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf() if kwargs.get(
            "parser_config", {}).get(
            "layout_recognize", True) else PlainParser()
        sections, tbls = pdf_parser(filename if not binary else binary,
                                    from_page=from_page, to_page=to_page, callback=callback)
        if sections and len(sections[0]) < 3:
            sections = [(t, lvl, [[0] * 5]) for t, lvl in sections]
        # set pivot using the most frequent type of title,
        # then merge between 2 pivot
        if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
            max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
            most_level = max(0, max_lvl - 1)
            levels = []
            for txt, _, _ in sections:
                for t, lvl in pdf_parser.outlines:
                    tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
                    tks_ = set([txt[i] + txt[i + 1]
                                for i in range(min(len(t), len(txt) - 1))])
                    if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
                        levels.append(lvl)
                        break
                else:
                    levels.append(max_lvl + 1)
        else:
            bull = bullets_category([txt for txt, _, _ in sections])
            most_level, levels = title_frequency(
                bull, [(txt, lvl) for txt, lvl, _ in sections])
        assert len(sections) == len(levels)
        sec_ids = []
        sid = 0
        for i, lvl in enumerate(levels):
            if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
                sid += 1
            sec_ids.append(sid)
            # print(lvl, self.boxes[i]["text"], most_level, sid)
        sections = [(txt, sec_ids[i], poss)
                    for i, (txt, _, poss) in enumerate(sections)]
        for (img, rows), poss in tbls:
            if not rows:
                continue
            sections.append((rows if isinstance(rows, str) else rows[0], -1,
                            [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
        def tag(pn, left, right, top, bottom):
            if pn + left + right + top + bottom == 0:
                return ""
            return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
                .format(pn, left, right, top, bottom)
        chunks = []
        last_sid = -2
        tk_cnt = 0
        for txt, sec_id, poss in sorted(sections, key=lambda x: (
                x[-1][0][0], x[-1][0][3], x[-1][0][1])):
            poss = "\t".join([tag(*pos) for pos in poss])
            if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
                if chunks:
                    chunks[-1] += "\n" + txt + poss
                    tk_cnt += num_tokens_from_string(txt)
                    continue
            chunks.append(txt + poss)
            tk_cnt = num_tokens_from_string(txt)
            if sec_id > -1:
                last_sid = sec_id
        res = tokenize_table(tbls, doc, eng)
        res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
        return res
    if re.search(r"\.docx$", filename, re.IGNORECASE):
        docx_parser = Docx()
        ti_list, tbls = docx_parser(filename, binary,
                                    from_page=0, to_page=10000, callback=callback)
        res = tokenize_table(tbls, doc, eng)
        for text, image in ti_list:
            d = copy.deepcopy(doc)
            d['image'] = image
            tokenize(d, text, eng)
            res.append(d)
        return res
    else:
        raise NotImplementedError("file type not supported yet(pdf and docx supported)")
    
if __name__ == "__main__":
    import sys
    def dummy(prog=None, msg=""):
        pass
    chunk(sys.argv[1], callback=dummy)
 |