You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

recognizer.py 17KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. # Licensed under the Apache License, Version 2.0 (the "License");
  2. # you may not use this file except in compliance with the License.
  3. # You may obtain a copy of the License at
  4. #
  5. # http://www.apache.org/licenses/LICENSE-2.0
  6. #
  7. # Unless required by applicable law or agreed to in writing, software
  8. # distributed under the License is distributed on an "AS IS" BASIS,
  9. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. # See the License for the specific language governing permissions and
  11. # limitations under the License.
  12. #
  13. import logging
  14. import os
  15. import math
  16. import numpy as np
  17. import cv2
  18. from copy import deepcopy
  19. import onnxruntime as ort
  20. from huggingface_hub import snapshot_download
  21. from api.utils.file_utils import get_project_base_directory
  22. from .operators import *
  23. class Recognizer(object):
  24. def __init__(self, label_list, task_name, model_dir=None):
  25. """
  26. If you have trouble downloading HuggingFace models, -_^ this might help!!
  27. For Linux:
  28. export HF_ENDPOINT=https://hf-mirror.com
  29. For Windows:
  30. Good luck
  31. ^_-
  32. """
  33. if not model_dir:
  34. model_dir = os.path.join(
  35. get_project_base_directory(),
  36. "rag/res/deepdoc")
  37. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  38. if not os.path.exists(model_file_path):
  39. model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
  40. local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
  41. local_dir_use_symlinks=False)
  42. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  43. else:
  44. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  45. if not os.path.exists(model_file_path):
  46. raise ValueError("not find model file path {}".format(
  47. model_file_path))
  48. if False and ort.get_device() == "GPU":
  49. options = ort.SessionOptions()
  50. options.enable_cpu_mem_arena = False
  51. self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')])
  52. else:
  53. self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
  54. self.input_names = [node.name for node in self.ort_sess.get_inputs()]
  55. self.output_names = [node.name for node in self.ort_sess.get_outputs()]
  56. self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
  57. self.label_list = label_list
  58. @staticmethod
  59. def sort_Y_firstly(arr, threashold):
  60. # sort using y1 first and then x1
  61. arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
  62. for i in range(len(arr) - 1):
  63. for j in range(i, -1, -1):
  64. # restore the order using th
  65. if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
  66. and arr[j + 1]["x0"] < arr[j]["x0"]:
  67. tmp = deepcopy(arr[j])
  68. arr[j] = deepcopy(arr[j + 1])
  69. arr[j + 1] = deepcopy(tmp)
  70. return arr
  71. @staticmethod
  72. def sort_X_firstly(arr, threashold, copy=True):
  73. # sort using y1 first and then x1
  74. arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
  75. for i in range(len(arr) - 1):
  76. for j in range(i, -1, -1):
  77. # restore the order using th
  78. if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
  79. and arr[j + 1]["top"] < arr[j]["top"]:
  80. tmp = deepcopy(arr[j]) if copy else arr[j]
  81. arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
  82. arr[j + 1] = deepcopy(tmp) if copy else tmp
  83. return arr
  84. @staticmethod
  85. def sort_C_firstly(arr, thr=0):
  86. # sort using y1 first and then x1
  87. # sorted(arr, key=lambda r: (r["x0"], r["top"]))
  88. arr = Recognizer.sort_X_firstly(arr, thr)
  89. for i in range(len(arr) - 1):
  90. for j in range(i, -1, -1):
  91. # restore the order using th
  92. if "C" not in arr[j] or "C" not in arr[j + 1]:
  93. continue
  94. if arr[j + 1]["C"] < arr[j]["C"] \
  95. or (
  96. arr[j + 1]["C"] == arr[j]["C"]
  97. and arr[j + 1]["top"] < arr[j]["top"]
  98. ):
  99. tmp = arr[j]
  100. arr[j] = arr[j + 1]
  101. arr[j + 1] = tmp
  102. return arr
  103. return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
  104. @staticmethod
  105. def sort_R_firstly(arr, thr=0):
  106. # sort using y1 first and then x1
  107. # sorted(arr, key=lambda r: (r["top"], r["x0"]))
  108. arr = Recognizer.sort_Y_firstly(arr, thr)
  109. for i in range(len(arr) - 1):
  110. for j in range(i, -1, -1):
  111. if "R" not in arr[j] or "R" not in arr[j + 1]:
  112. continue
  113. if arr[j + 1]["R"] < arr[j]["R"] \
  114. or (
  115. arr[j + 1]["R"] == arr[j]["R"]
  116. and arr[j + 1]["x0"] < arr[j]["x0"]
  117. ):
  118. tmp = arr[j]
  119. arr[j] = arr[j + 1]
  120. arr[j + 1] = tmp
  121. return arr
  122. @staticmethod
  123. def overlapped_area(a, b, ratio=True):
  124. tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
  125. if b["x0"] > x1 or b["x1"] < x0:
  126. return 0
  127. if b["bottom"] < tp or b["top"] > btm:
  128. return 0
  129. x0_ = max(b["x0"], x0)
  130. x1_ = min(b["x1"], x1)
  131. assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
  132. tp, btm, x0, x1, b)
  133. tp_ = max(b["top"], tp)
  134. btm_ = min(b["bottom"], btm)
  135. assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
  136. tp, btm, x0, x1, b)
  137. ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
  138. x0 != 0 and btm - tp != 0 else 0
  139. if ov > 0 and ratio:
  140. ov /= (x1 - x0) * (btm - tp)
  141. return ov
  142. @staticmethod
  143. def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
  144. def notOverlapped(a, b):
  145. return any([a["x1"] < b["x0"],
  146. a["x0"] > b["x1"],
  147. a["bottom"] < b["top"],
  148. a["top"] > b["bottom"]])
  149. i = 0
  150. while i + 1 < len(layouts):
  151. j = i + 1
  152. while j < min(i + far, len(layouts)) \
  153. and (layouts[i].get("type", "") != layouts[j].get("type", "")
  154. or notOverlapped(layouts[i], layouts[j])):
  155. j += 1
  156. if j >= min(i + far, len(layouts)):
  157. i += 1
  158. continue
  159. if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
  160. and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
  161. i += 1
  162. continue
  163. if layouts[i].get("score") and layouts[j].get("score"):
  164. if layouts[i]["score"] > layouts[j]["score"]:
  165. layouts.pop(j)
  166. else:
  167. layouts.pop(i)
  168. continue
  169. area_i, area_i_1 = 0, 0
  170. for b in boxes:
  171. if not notOverlapped(b, layouts[i]):
  172. area_i += Recognizer.overlapped_area(b, layouts[i], False)
  173. if not notOverlapped(b, layouts[j]):
  174. area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
  175. if area_i > area_i_1:
  176. layouts.pop(j)
  177. else:
  178. layouts.pop(i)
  179. return layouts
  180. def create_inputs(self, imgs, im_info):
  181. """generate input for different model type
  182. Args:
  183. imgs (list(numpy)): list of images (np.ndarray)
  184. im_info (list(dict)): list of image info
  185. Returns:
  186. inputs (dict): input of model
  187. """
  188. inputs = {}
  189. im_shape = []
  190. scale_factor = []
  191. if len(imgs) == 1:
  192. inputs['image'] = np.array((imgs[0],)).astype('float32')
  193. inputs['im_shape'] = np.array(
  194. (im_info[0]['im_shape'],)).astype('float32')
  195. inputs['scale_factor'] = np.array(
  196. (im_info[0]['scale_factor'],)).astype('float32')
  197. return inputs
  198. for e in im_info:
  199. im_shape.append(np.array((e['im_shape'],)).astype('float32'))
  200. scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
  201. inputs['im_shape'] = np.concatenate(im_shape, axis=0)
  202. inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
  203. imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
  204. max_shape_h = max([e[0] for e in imgs_shape])
  205. max_shape_w = max([e[1] for e in imgs_shape])
  206. padding_imgs = []
  207. for img in imgs:
  208. im_c, im_h, im_w = img.shape[:]
  209. padding_im = np.zeros(
  210. (im_c, max_shape_h, max_shape_w), dtype=np.float32)
  211. padding_im[:, :im_h, :im_w] = img
  212. padding_imgs.append(padding_im)
  213. inputs['image'] = np.stack(padding_imgs, axis=0)
  214. return inputs
  215. @staticmethod
  216. def find_overlapped(box, boxes_sorted_by_y, naive=False):
  217. if not boxes_sorted_by_y:
  218. return
  219. bxs = boxes_sorted_by_y
  220. s, e, ii = 0, len(bxs), 0
  221. while s < e and not naive:
  222. ii = (e + s) // 2
  223. pv = bxs[ii]
  224. if box["bottom"] < pv["top"]:
  225. e = ii
  226. continue
  227. if box["top"] > pv["bottom"]:
  228. s = ii + 1
  229. continue
  230. break
  231. while s < ii:
  232. if box["top"] > bxs[s]["bottom"]:
  233. s += 1
  234. break
  235. while e - 1 > ii:
  236. if box["bottom"] < bxs[e - 1]["top"]:
  237. e -= 1
  238. break
  239. max_overlaped_i, max_overlaped = None, 0
  240. for i in range(s, e):
  241. ov = Recognizer.overlapped_area(bxs[i], box)
  242. if ov <= max_overlaped:
  243. continue
  244. max_overlaped_i = i
  245. max_overlaped = ov
  246. return max_overlaped_i
  247. @staticmethod
  248. def find_horizontally_tightest_fit(box, boxes):
  249. if not boxes:
  250. return
  251. min_dis, min_i = 1000000, None
  252. for i,b in enumerate(boxes):
  253. if box.get("layoutno", "0") != b.get("layoutno", "0"):
  254. continue
  255. dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
  256. if dis < min_dis:
  257. min_i = i
  258. min_dis = dis
  259. return min_i
  260. @staticmethod
  261. def find_overlapped_with_threashold(box, boxes, thr=0.3):
  262. if not boxes:
  263. return
  264. max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0
  265. s, e = 0, len(boxes)
  266. for i in range(s, e):
  267. ov = Recognizer.overlapped_area(box, boxes[i])
  268. _ov = Recognizer.overlapped_area(boxes[i], box)
  269. if (ov, _ov) < (max_overlapped, _max_overlapped):
  270. continue
  271. max_overlapped_i = i
  272. max_overlapped = ov
  273. _max_overlapped = _ov
  274. return max_overlapped_i
  275. def preprocess(self, image_list):
  276. inputs = []
  277. if "scale_factor" in self.input_names:
  278. preprocess_ops = []
  279. for op_info in [
  280. {'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
  281. {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
  282. {'type': 'Permute'},
  283. {'stride': 32, 'type': 'PadStride'}
  284. ]:
  285. new_op_info = op_info.copy()
  286. op_type = new_op_info.pop('type')
  287. preprocess_ops.append(eval(op_type)(**new_op_info))
  288. for im_path in image_list:
  289. im, im_info = preprocess(im_path, preprocess_ops)
  290. inputs.append({"image": np.array((im,)).astype('float32'),
  291. "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
  292. else:
  293. hh, ww = self.input_shape
  294. for img in image_list:
  295. h, w = img.shape[:2]
  296. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  297. img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
  298. # Scale input pixel values to 0 to 1
  299. img /= 255.0
  300. img = img.transpose(2, 0, 1)
  301. img = img[np.newaxis, :, :, :].astype(np.float32)
  302. inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
  303. return inputs
  304. def postprocess(self, boxes, inputs, thr):
  305. if "scale_factor" in self.input_names:
  306. bb = []
  307. for b in boxes:
  308. clsid, bbox, score = int(b[0]), b[2:], b[1]
  309. if score < thr:
  310. continue
  311. if clsid >= len(self.label_list):
  312. continue
  313. bb.append({
  314. "type": self.label_list[clsid].lower(),
  315. "bbox": [float(t) for t in bbox.tolist()],
  316. "score": float(score)
  317. })
  318. return bb
  319. def xywh2xyxy(x):
  320. # [x, y, w, h] to [x1, y1, x2, y2]
  321. y = np.copy(x)
  322. y[:, 0] = x[:, 0] - x[:, 2] / 2
  323. y[:, 1] = x[:, 1] - x[:, 3] / 2
  324. y[:, 2] = x[:, 0] + x[:, 2] / 2
  325. y[:, 3] = x[:, 1] + x[:, 3] / 2
  326. return y
  327. def compute_iou(box, boxes):
  328. # Compute xmin, ymin, xmax, ymax for both boxes
  329. xmin = np.maximum(box[0], boxes[:, 0])
  330. ymin = np.maximum(box[1], boxes[:, 1])
  331. xmax = np.minimum(box[2], boxes[:, 2])
  332. ymax = np.minimum(box[3], boxes[:, 3])
  333. # Compute intersection area
  334. intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
  335. # Compute union area
  336. box_area = (box[2] - box[0]) * (box[3] - box[1])
  337. boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
  338. union_area = box_area + boxes_area - intersection_area
  339. # Compute IoU
  340. iou = intersection_area / union_area
  341. return iou
  342. def iou_filter(boxes, scores, iou_threshold):
  343. sorted_indices = np.argsort(scores)[::-1]
  344. keep_boxes = []
  345. while sorted_indices.size > 0:
  346. # Pick the last box
  347. box_id = sorted_indices[0]
  348. keep_boxes.append(box_id)
  349. # Compute IoU of the picked box with the rest
  350. ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
  351. # Remove boxes with IoU over the threshold
  352. keep_indices = np.where(ious < iou_threshold)[0]
  353. # print(keep_indices.shape, sorted_indices.shape)
  354. sorted_indices = sorted_indices[keep_indices + 1]
  355. return keep_boxes
  356. boxes = np.squeeze(boxes).T
  357. # Filter out object confidence scores below threshold
  358. scores = np.max(boxes[:, 4:], axis=1)
  359. boxes = boxes[scores > thr, :]
  360. scores = scores[scores > thr]
  361. if len(boxes) == 0:
  362. return []
  363. # Get the class with the highest confidence
  364. class_ids = np.argmax(boxes[:, 4:], axis=1)
  365. boxes = boxes[:, :4]
  366. input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
  367. boxes = np.multiply(boxes, input_shape, dtype=np.float32)
  368. boxes = xywh2xyxy(boxes)
  369. unique_class_ids = np.unique(class_ids)
  370. indices = []
  371. for class_id in unique_class_ids:
  372. class_indices = np.where(class_ids == class_id)[0]
  373. class_boxes = boxes[class_indices, :]
  374. class_scores = scores[class_indices]
  375. class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
  376. indices.extend(class_indices[class_keep_boxes])
  377. return [{
  378. "type": self.label_list[class_ids[i]].lower(),
  379. "bbox": [float(t) for t in boxes[i].tolist()],
  380. "score": float(scores[i])
  381. } for i in indices]
  382. def __call__(self, image_list, thr=0.7, batch_size=16):
  383. res = []
  384. imgs = []
  385. for i in range(len(image_list)):
  386. if not isinstance(image_list[i], np.ndarray):
  387. imgs.append(np.array(image_list[i]))
  388. else:
  389. imgs.append(image_list[i])
  390. batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
  391. for i in range(batch_loop_cnt):
  392. start_index = i * batch_size
  393. end_index = min((i + 1) * batch_size, len(imgs))
  394. batch_image_list = imgs[start_index:end_index]
  395. inputs = self.preprocess(batch_image_list)
  396. logging.debug("preprocess")
  397. for ins in inputs:
  398. bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
  399. res.append(bb)
  400. #seeit.save_results(image_list, res, self.label_list, threshold=thr)
  401. return res