| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 | #
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import json
import logging
import os
from api.db.services.user_service import TenantService
from api.utils.file_utils import get_project_base_directory
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel, TTSModel
from api.db import LLMType
from api.db.db_models import DB
from api.db.db_models import LLMFactories, LLM, TenantLLM
from api.db.services.common_service import CommonService
class LLMFactoriesService(CommonService):
    model = LLMFactories
class LLMService(CommonService):
    model = LLM
class TenantLLMService(CommonService):
    model = TenantLLM
    @classmethod
    @DB.connection_context()
    def get_api_key(cls, tenant_id, model_name):
        mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
        if not fid:
            objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
        else:
            objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
        if not objs:
            return
        return objs[0]
    @classmethod
    @DB.connection_context()
    def get_my_llms(cls, tenant_id):
        fields = [
            cls.model.llm_factory,
            LLMFactories.logo,
            LLMFactories.tags,
            cls.model.model_type,
            cls.model.llm_name,
            cls.model.used_tokens
        ]
        objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
            cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
        return list(objs)
    @staticmethod
    def split_model_name_and_factory(model_name):
        arr = model_name.split("@")
        if len(arr) < 2:
            return model_name, None
        if len(arr) > 2:
            return "@".join(arr[0:-1]), arr[-1]
        try:
            fact = json.load(open(os.path.join(get_project_base_directory(), "conf/llm_factories.json"), "r"))["factory_llm_infos"]
            fact = set([f["name"] for f in fact])
            if arr[-1] not in fact:
                return model_name, None
            return arr[0], arr[-1]
        except Exception as e:
            logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
        return model_name, None
    @classmethod
    @DB.connection_context()
    def model_instance(cls, tenant_id, llm_type,
                       llm_name=None, lang="Chinese"):
        e, tenant = TenantService.get_by_id(tenant_id)
        if not e:
            raise LookupError("Tenant not found")
        if llm_type == LLMType.EMBEDDING.value:
            mdlnm = tenant.embd_id if not llm_name else llm_name
        elif llm_type == LLMType.SPEECH2TEXT.value:
            mdlnm = tenant.asr_id
        elif llm_type == LLMType.IMAGE2TEXT.value:
            mdlnm = tenant.img2txt_id if not llm_name else llm_name
        elif llm_type == LLMType.CHAT.value:
            mdlnm = tenant.llm_id if not llm_name else llm_name
        elif llm_type == LLMType.RERANK:
            mdlnm = tenant.rerank_id if not llm_name else llm_name
        elif llm_type == LLMType.TTS:
            mdlnm = tenant.tts_id if not llm_name else llm_name
        else:
            assert False, "LLM type error"
        model_config = cls.get_api_key(tenant_id, mdlnm)
        mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
        if model_config:
            model_config = model_config.to_dict()
        if not model_config:
            if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
                llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
                if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
                    model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": mdlnm, "api_base": ""}
            if not model_config:
                if mdlnm == "flag-embedding":
                    model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
                                "llm_name": llm_name, "api_base": ""}
                else:
                    if not mdlnm:
                        raise LookupError(f"Type of {llm_type} model is not set.")
                    raise LookupError("Model({}) not authorized".format(mdlnm))
        if llm_type == LLMType.EMBEDDING.value:
            if model_config["llm_factory"] not in EmbeddingModel:
                return
            return EmbeddingModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
        if llm_type == LLMType.RERANK:
            if model_config["llm_factory"] not in RerankModel:
                return
            return RerankModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
        if llm_type == LLMType.IMAGE2TEXT.value:
            if model_config["llm_factory"] not in CvModel:
                return
            return CvModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], lang,
                base_url=model_config["api_base"]
            )
        if llm_type == LLMType.CHAT.value:
            if model_config["llm_factory"] not in ChatModel:
                return
            return ChatModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
        if llm_type == LLMType.SPEECH2TEXT:
            if model_config["llm_factory"] not in Seq2txtModel:
                return
            return Seq2txtModel[model_config["llm_factory"]](
                key=model_config["api_key"], model_name=model_config["llm_name"],
                lang=lang,
                base_url=model_config["api_base"]
            )
        if llm_type == LLMType.TTS:
            if model_config["llm_factory"] not in TTSModel:
                return
            return TTSModel[model_config["llm_factory"]](
                model_config["api_key"],
                model_config["llm_name"],
                base_url=model_config["api_base"],
            )
    @classmethod
    @DB.connection_context()
    def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
        e, tenant = TenantService.get_by_id(tenant_id)
        if not e:
            raise LookupError("Tenant not found")
        if llm_type == LLMType.EMBEDDING.value:
            mdlnm = tenant.embd_id
        elif llm_type == LLMType.SPEECH2TEXT.value:
            mdlnm = tenant.asr_id
        elif llm_type == LLMType.IMAGE2TEXT.value:
            mdlnm = tenant.img2txt_id
        elif llm_type == LLMType.CHAT.value:
            mdlnm = tenant.llm_id if not llm_name else llm_name
        elif llm_type == LLMType.RERANK:
            mdlnm = tenant.rerank_id if not llm_name else llm_name
        elif llm_type == LLMType.TTS:
            mdlnm = tenant.tts_id if not llm_name else llm_name
        else:
            assert False, "LLM type error"
        llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
        num = 0
        try:
            if llm_factory:
                tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory)
            else:
                tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name)
            if not tenant_llms:
                return num
            else:
                tenant_llm = tenant_llms[0]
                num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens)\
                    .where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name)\
                    .execute()
        except Exception:
            logging.exception("TenantLLMService.increase_usage got exception")
        return num
    @classmethod
    @DB.connection_context()
    def get_openai_models(cls):
        objs = cls.model.select().where(
            (cls.model.llm_factory == "OpenAI"),
            ~(cls.model.llm_name == "text-embedding-3-small"),
            ~(cls.model.llm_name == "text-embedding-3-large")
        ).dicts()
        return list(objs)
class LLMBundle(object):
    def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
        self.tenant_id = tenant_id
        self.llm_type = llm_type
        self.llm_name = llm_name
        self.mdl = TenantLLMService.model_instance(
            tenant_id, llm_type, llm_name, lang=lang)
        assert self.mdl, "Can't find model for {}/{}/{}".format(
            tenant_id, llm_type, llm_name)
        self.max_length = 8192
        for lm in LLMService.query(llm_name=llm_name):
            self.max_length = lm.max_tokens
            break
    
    def encode(self, texts: list):
        embeddings, used_tokens = self.mdl.encode(texts)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            logging.error(
                "LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
        return embeddings, used_tokens
    def encode_queries(self, query: str):
        emd, used_tokens = self.mdl.encode_queries(query)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            logging.error(
                "LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
        return emd, used_tokens
    def similarity(self, query: str, texts: list):
        sim, used_tokens = self.mdl.similarity(query, texts)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            logging.error(
                "LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
        return sim, used_tokens
    def describe(self, image, max_tokens=300):
        txt, used_tokens = self.mdl.describe(image, max_tokens)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            logging.error(
                "LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
        return txt
    def transcription(self, audio):
        txt, used_tokens = self.mdl.transcription(audio)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            logging.error(
                "LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
        return txt
    def tts(self, text):
        for chunk in self.mdl.tts(text):
            if isinstance(chunk,int):
                if not TenantLLMService.increase_usage(
                    self.tenant_id, self.llm_type, chunk, self.llm_name):
                        logging.error(
                            "LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
                return
            yield chunk
    def chat(self, system, history, gen_conf):
        txt, used_tokens = self.mdl.chat(system, history, gen_conf)
        if isinstance(txt, int) and not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens, self.llm_name):
            logging.error(
                "LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
        return txt
    def chat_streamly(self, system, history, gen_conf):
        for txt in self.mdl.chat_streamly(system, history, gen_conf):
            if isinstance(txt, int):
                if not TenantLLMService.increase_usage(
                        self.tenant_id, self.llm_type, txt, self.llm_name):
                    logging.error(
                        "LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
                return
            yield txt
 |