You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

chunk_app.py 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. from flask import request
  19. from flask_login import login_required, current_user
  20. from api.db.services.dialog_service import keyword_extraction
  21. from rag.app.qa import rmPrefix, beAdoc
  22. from rag.nlp import search, rag_tokenizer
  23. from rag.utils import rmSpace
  24. from api.db import LLMType, ParserType
  25. from api.db.services.knowledgebase_service import KnowledgebaseService
  26. from api.db.services.llm_service import LLMBundle
  27. from api.db.services.user_service import UserTenantService
  28. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  29. from api.db.services.document_service import DocumentService
  30. from api import settings
  31. from api.utils.api_utils import get_json_result
  32. import hashlib
  33. import re
  34. @manager.route('/list', methods=['POST'])
  35. @login_required
  36. @validate_request("doc_id")
  37. def list_chunk():
  38. req = request.json
  39. doc_id = req["doc_id"]
  40. page = int(req.get("page", 1))
  41. size = int(req.get("size", 30))
  42. question = req.get("keywords", "")
  43. try:
  44. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  45. if not tenant_id:
  46. return get_data_error_result(message="Tenant not found!")
  47. e, doc = DocumentService.get_by_id(doc_id)
  48. if not e:
  49. return get_data_error_result(message="Document not found!")
  50. kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
  51. query = {
  52. "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
  53. }
  54. if "available_int" in req:
  55. query["available_int"] = int(req["available_int"])
  56. sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
  57. res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
  58. for id in sres.ids:
  59. d = {
  60. "chunk_id": id,
  61. "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
  62. id].get(
  63. "content_with_weight", ""),
  64. "doc_id": sres.field[id]["doc_id"],
  65. "docnm_kwd": sres.field[id]["docnm_kwd"],
  66. "important_kwd": sres.field[id].get("important_kwd", []),
  67. "question_kwd": sres.field[id].get("question_kwd", []),
  68. "image_id": sres.field[id].get("img_id", ""),
  69. "available_int": int(sres.field[id].get("available_int", 1)),
  70. "positions": json.loads(sres.field[id].get("position_list", "[]")),
  71. }
  72. assert isinstance(d["positions"], list)
  73. assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
  74. res["chunks"].append(d)
  75. return get_json_result(data=res)
  76. except Exception as e:
  77. if str(e).find("not_found") > 0:
  78. return get_json_result(data=False, message='No chunk found!',
  79. code=settings.RetCode.DATA_ERROR)
  80. return server_error_response(e)
  81. @manager.route('/get', methods=['GET'])
  82. @login_required
  83. def get():
  84. chunk_id = request.args["chunk_id"]
  85. try:
  86. tenants = UserTenantService.query(user_id=current_user.id)
  87. if not tenants:
  88. return get_data_error_result(message="Tenant not found!")
  89. tenant_id = tenants[0].tenant_id
  90. kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
  91. chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
  92. if chunk is None:
  93. return server_error_response(Exception("Chunk not found"))
  94. k = []
  95. for n in chunk.keys():
  96. if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
  97. k.append(n)
  98. for n in k:
  99. del chunk[n]
  100. return get_json_result(data=chunk)
  101. except Exception as e:
  102. if str(e).find("NotFoundError") >= 0:
  103. return get_json_result(data=False, message='Chunk not found!',
  104. code=settings.RetCode.DATA_ERROR)
  105. return server_error_response(e)
  106. @manager.route('/set', methods=['POST'])
  107. @login_required
  108. @validate_request("doc_id", "chunk_id", "content_with_weight",
  109. "important_kwd", "question_kwd")
  110. def set():
  111. req = request.json
  112. d = {
  113. "id": req["chunk_id"],
  114. "content_with_weight": req["content_with_weight"]}
  115. d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
  116. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  117. d["important_kwd"] = req["important_kwd"]
  118. d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
  119. d["question_kwd"] = req["question_kwd"]
  120. d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
  121. if "available_int" in req:
  122. d["available_int"] = req["available_int"]
  123. try:
  124. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  125. if not tenant_id:
  126. return get_data_error_result(message="Tenant not found!")
  127. embd_id = DocumentService.get_embd_id(req["doc_id"])
  128. embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
  129. e, doc = DocumentService.get_by_id(req["doc_id"])
  130. if not e:
  131. return get_data_error_result(message="Document not found!")
  132. if doc.parser_id == ParserType.QA:
  133. arr = [
  134. t for t in re.split(
  135. r"[\n\t]",
  136. req["content_with_weight"]) if len(t) > 1]
  137. if len(arr) != 2:
  138. return get_data_error_result(
  139. message="Q&A must be separated by TAB/ENTER key.")
  140. q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
  141. d = beAdoc(d, arr[0], arr[1], not any(
  142. [rag_tokenizer.is_chinese(t) for t in q + a]))
  143. v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
  144. v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
  145. d["q_%d_vec" % len(v)] = v.tolist()
  146. settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
  147. return get_json_result(data=True)
  148. except Exception as e:
  149. return server_error_response(e)
  150. @manager.route('/switch', methods=['POST'])
  151. @login_required
  152. @validate_request("chunk_ids", "available_int", "doc_id")
  153. def switch():
  154. req = request.json
  155. try:
  156. e, doc = DocumentService.get_by_id(req["doc_id"])
  157. if not e:
  158. return get_data_error_result(message="Document not found!")
  159. for cid in req["chunk_ids"]:
  160. if not settings.docStoreConn.update({"id": cid},
  161. {"available_int": int(req["available_int"])},
  162. search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
  163. doc.kb_id):
  164. return get_data_error_result(message="Index updating failure")
  165. return get_json_result(data=True)
  166. except Exception as e:
  167. return server_error_response(e)
  168. @manager.route('/rm', methods=['POST'])
  169. @login_required
  170. @validate_request("chunk_ids", "doc_id")
  171. def rm():
  172. req = request.json
  173. try:
  174. e, doc = DocumentService.get_by_id(req["doc_id"])
  175. if not e:
  176. return get_data_error_result(message="Document not found!")
  177. if not settings.docStoreConn.delete({"id": req["chunk_ids"]}, search.index_name(current_user.id), doc.kb_id):
  178. return get_data_error_result(message="Index updating failure")
  179. deleted_chunk_ids = req["chunk_ids"]
  180. chunk_number = len(deleted_chunk_ids)
  181. DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
  182. return get_json_result(data=True)
  183. except Exception as e:
  184. return server_error_response(e)
  185. @manager.route('/create', methods=['POST'])
  186. @login_required
  187. @validate_request("doc_id", "content_with_weight")
  188. def create():
  189. req = request.json
  190. md5 = hashlib.md5()
  191. md5.update((req["content_with_weight"] + req["doc_id"]).encode("utf-8"))
  192. chunck_id = md5.hexdigest()
  193. d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
  194. "content_with_weight": req["content_with_weight"]}
  195. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  196. d["important_kwd"] = req.get("important_kwd", [])
  197. d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
  198. d["question_kwd"] = req.get("question_kwd", [])
  199. d["question_tks"] = rag_tokenizer.tokenize("\n".join(req.get("question_kwd", [])))
  200. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  201. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  202. try:
  203. e, doc = DocumentService.get_by_id(req["doc_id"])
  204. if not e:
  205. return get_data_error_result(message="Document not found!")
  206. d["kb_id"] = [doc.kb_id]
  207. d["docnm_kwd"] = doc.name
  208. d["title_tks"] = rag_tokenizer.tokenize(doc.name)
  209. d["doc_id"] = doc.id
  210. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  211. if not tenant_id:
  212. return get_data_error_result(message="Tenant not found!")
  213. e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
  214. if not e:
  215. return get_data_error_result(message="Knowledgebase not found!")
  216. if kb.pagerank:
  217. d["pagerank_fea"] = kb.pagerank
  218. embd_id = DocumentService.get_embd_id(req["doc_id"])
  219. embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
  220. v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
  221. v = 0.1 * v[0] + 0.9 * v[1]
  222. d["q_%d_vec" % len(v)] = v.tolist()
  223. settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
  224. DocumentService.increment_chunk_num(
  225. doc.id, doc.kb_id, c, 1, 0)
  226. return get_json_result(data={"chunk_id": chunck_id})
  227. except Exception as e:
  228. return server_error_response(e)
  229. @manager.route('/retrieval_test', methods=['POST'])
  230. @login_required
  231. @validate_request("kb_id", "question")
  232. def retrieval_test():
  233. req = request.json
  234. page = int(req.get("page", 1))
  235. size = int(req.get("size", 30))
  236. question = req["question"]
  237. kb_ids = req["kb_id"]
  238. if isinstance(kb_ids, str):
  239. kb_ids = [kb_ids]
  240. doc_ids = req.get("doc_ids", [])
  241. similarity_threshold = float(req.get("similarity_threshold", 0.0))
  242. vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
  243. top = int(req.get("top_k", 1024))
  244. tenant_ids = []
  245. try:
  246. tenants = UserTenantService.query(user_id=current_user.id)
  247. for kb_id in kb_ids:
  248. for tenant in tenants:
  249. if KnowledgebaseService.query(
  250. tenant_id=tenant.tenant_id, id=kb_id):
  251. tenant_ids.append(tenant.tenant_id)
  252. break
  253. else:
  254. return get_json_result(
  255. data=False, message='Only owner of knowledgebase authorized for this operation.',
  256. code=settings.RetCode.OPERATING_ERROR)
  257. e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
  258. if not e:
  259. return get_data_error_result(message="Knowledgebase not found!")
  260. embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
  261. rerank_mdl = None
  262. if req.get("rerank_id"):
  263. rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
  264. if req.get("keyword", False):
  265. chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
  266. question += keyword_extraction(chat_mdl, question)
  267. retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
  268. ranks = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
  269. similarity_threshold, vector_similarity_weight, top,
  270. doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"))
  271. for c in ranks["chunks"]:
  272. c.pop("vector", None)
  273. return get_json_result(data=ranks)
  274. except Exception as e:
  275. if str(e).find("not_found") > 0:
  276. return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
  277. code=settings.RetCode.DATA_ERROR)
  278. return server_error_response(e)
  279. @manager.route('/knowledge_graph', methods=['GET'])
  280. @login_required
  281. def knowledge_graph():
  282. doc_id = request.args["doc_id"]
  283. tenant_id = DocumentService.get_tenant_id(doc_id)
  284. kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
  285. req = {
  286. "doc_ids": [doc_id],
  287. "knowledge_graph_kwd": ["graph", "mind_map"]
  288. }
  289. sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
  290. obj = {"graph": {}, "mind_map": {}}
  291. for id in sres.ids[:2]:
  292. ty = sres.field[id]["knowledge_graph_kwd"]
  293. try:
  294. content_json = json.loads(sres.field[id]["content_with_weight"])
  295. except Exception:
  296. continue
  297. if ty == 'mind_map':
  298. node_dict = {}
  299. def repeat_deal(content_json, node_dict):
  300. if 'id' in content_json:
  301. if content_json['id'] in node_dict:
  302. node_name = content_json['id']
  303. content_json['id'] += f"({node_dict[content_json['id']]})"
  304. node_dict[node_name] += 1
  305. else:
  306. node_dict[content_json['id']] = 1
  307. if 'children' in content_json and content_json['children']:
  308. for item in content_json['children']:
  309. repeat_deal(item, node_dict)
  310. repeat_deal(content_json, node_dict)
  311. obj[ty] = content_json
  312. return get_json_result(data=obj)