The “garbage in garbage out” status quo remains unchanged despite the fact that LLMs have advanced Natural Language Processing (NLP) significantly. In response, RAGFlow introduces two unique features compared to other Retrieval-Augmented Generation (RAG) products.
English, simplified Chinese, traditional Chinese for now.
We put painstaking effort into document pre-processing tasks like layout analysis, table structure recognition, and OCR (Optical Character Recognition) using our vision model. This contributes to the additional time required.
ARM64 and Ascend GPU are not supported.
These APIs are still in development. Contributions are welcome.
No, this feature is still in development. Contributions are welcome.
This feature and the related APIs are still in development. Contributions are welcome.
This feature and the related APIs are still in development. Contributions are welcome.
You limit what the system responds to what you specify in Empty response if nothing is retrieved from your knowledge base. If you do not specify anything in Empty response, you let your LLM improvise, giving it a chance to hallucinate.
You can use Ollama to deploy local LLM. See here for more information.
WARNING: can't find /raglof/rag/res/borker.tm?Ignore this warning and continue. All system warnings can be ignored.
Realtime synonym is disabled, since no redis connection?Ignore this warning and continue. All system warnings can be ignored.
Parsing requests have to wait in queue due to limited server resources. We are currently enhancing our algorithms and increasing computing power.
If your RAGFlow is deployed locally, try the following:
bash
docker logs -f ragflow-server
Index failure?An index failure usually indicates an unavailable Elasticsearch service.
tail -f path_to_ragflow/docker/ragflow-logs/rag/*.log
$ docker ps
The system displays the following if all your RAGFlow components are running properly:
5bc45806b680 infiniflow/ragflow:v0.2.0 "./entrypoint.sh" 11 hours ago Up 11 hours 0.0.0.0:80->80/tcp, :::80->80/tcp, 0.0.0.0:443->443/tcp, :::443->443/tcp, 0.0.0.0:9380->9380/tcp, :::9380->9380/tcp ragflow-server
91220e3285dd docker.elastic.co/elasticsearch/elasticsearch:8.11.3 "/bin/tini -- /usr/l…" 11 hours ago Up 11 hours (healthy) 9300/tcp, 0.0.0.0:9200->9200/tcp, :::9200->9200/tcp ragflow-es-01
d8c86f06c56b mysql:5.7.18 "docker-entrypoint.s…" 7 days ago Up 16 seconds (healthy) 0.0.0.0:3306->3306/tcp, :::3306->3306/tcp ragflow-mysql
cd29bcb254bc quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z "/usr/bin/docker-ent…" 2 weeks ago Up 11 hours 0.0.0.0:9001->9001/tcp, :::9001->9001/tcp, 0.0.0.0:9000->9000/tcp, :::9000->9000/tcp ragflow-minio
Exception: Can't connect to ES cluster?$ docker ps
The status of a ‘healthy’ Elasticsearch component in your RAGFlow should look as follows:
91220e3285dd docker.elastic.co/elasticsearch/elasticsearch:8.11.3 "/bin/tini -- /usr/l…" 11 hours ago Up 11 hours (healthy) 9300/tcp, 0.0.0.0:9200->9200/tcp, :::9200->9200/tcp ragflow-es-01
If your container keeps restarting, ensure vm.max_map_count >= 262144 as per this README.
If your issue persists, ensure that the ES host setting is correct:
es:
hosts: 'http://es01:9200'
bash
curl http://<IP_OF_ES>:<PORT_OF_ES>
{"data":null,"retcode":100,"retmsg":"<NotFound '404: Not Found'>"}?Your IP address or port number may be incorrect. If you are using the default configurations, enter http:// (NOT localhost, NOT 9380, AND NO PORT NUMBER REQUIRED!) in your browser. This should work.