您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

benchmark.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import os
  18. from collections import defaultdict
  19. from concurrent.futures import ThreadPoolExecutor
  20. from copy import deepcopy
  21. from api.db import LLMType
  22. from api.db.services.llm_service import LLMBundle
  23. from api.db.services.knowledgebase_service import KnowledgebaseService
  24. from api.settings import retrievaler
  25. from api.utils import get_uuid
  26. from api.utils.file_utils import get_project_base_directory
  27. from rag.nlp import tokenize, search
  28. from rag.utils.es_conn import ELASTICSEARCH
  29. from ranx import evaluate
  30. import pandas as pd
  31. from tqdm import tqdm
  32. class Benchmark:
  33. def __init__(self, kb_id):
  34. e, self.kb = KnowledgebaseService.get_by_id(kb_id)
  35. self.similarity_threshold = self.kb.similarity_threshold
  36. self.vector_similarity_weight = self.kb.vector_similarity_weight
  37. self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language)
  38. def _get_benchmarks(self, query, dataset_idxnm, count=16):
  39. req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
  40. sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
  41. return sres
  42. def _get_retrieval(self, qrels, dataset_idxnm):
  43. run = defaultdict(dict)
  44. query_list = list(qrels.keys())
  45. for query in query_list:
  46. ranks = retrievaler.retrieval(query, self.embd_mdl, dataset_idxnm.replace("ragflow_", ""),
  47. [self.kb.id], 0, 30,
  48. 0.0, self.vector_similarity_weight)
  49. for c in ranks["chunks"]:
  50. if "vector" in c:
  51. del c["vector"]
  52. run[query][c["chunk_id"]] = c["similarity"]
  53. return run
  54. def embedding(self, docs, batch_size=16):
  55. vects = []
  56. cnts = [d["content_with_weight"] for d in docs]
  57. for i in range(0, len(cnts), batch_size):
  58. vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
  59. vects.extend(vts.tolist())
  60. assert len(docs) == len(vects)
  61. for i, d in enumerate(docs):
  62. v = vects[i]
  63. d["q_%d_vec" % len(v)] = v
  64. return docs
  65. @staticmethod
  66. def init_kb(index_name):
  67. idxnm = search.index_name(index_name)
  68. if ELASTICSEARCH.indexExist(idxnm):
  69. ELASTICSEARCH.deleteIdx(search.index_name(index_name))
  70. return ELASTICSEARCH.createIdx(idxnm, json.load(
  71. open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
  72. def ms_marco_index(self, file_path, index_name):
  73. qrels = defaultdict(dict)
  74. texts = defaultdict(dict)
  75. docs = []
  76. filelist = os.listdir(file_path)
  77. self.init_kb(index_name)
  78. max_workers = int(os.environ.get('MAX_WORKERS', 3))
  79. exe = ThreadPoolExecutor(max_workers=max_workers)
  80. threads = []
  81. def slow_actions(es_docs, idx_nm):
  82. es_docs = self.embedding(es_docs)
  83. ELASTICSEARCH.bulk(es_docs, idx_nm)
  84. return True
  85. for dir in filelist:
  86. data = pd.read_parquet(os.path.join(file_path, dir))
  87. for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + dir):
  88. query = data.iloc[i]['query']
  89. for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
  90. d = {
  91. "id": get_uuid(),
  92. "kb_id": self.kb.id
  93. }
  94. tokenize(d, text, "english")
  95. docs.append(d)
  96. texts[d["id"]] = text
  97. qrels[query][d["id"]] = int(rel)
  98. if len(docs) >= 32:
  99. threads.append(
  100. exe.submit(slow_actions, deepcopy(docs), search.index_name(index_name)))
  101. docs = []
  102. threads.append(
  103. exe.submit(slow_actions, deepcopy(docs), search.index_name(index_name)))
  104. for i in tqdm(range(len(threads)), colour="red", desc="Indexing:" + dir):
  105. if not threads[i].result().output:
  106. print("Indexing error...")
  107. return qrels, texts
  108. def trivia_qa_index(self, file_path, index_name):
  109. qrels = defaultdict(dict)
  110. texts = defaultdict(dict)
  111. docs = []
  112. filelist = os.listdir(file_path)
  113. for dir in filelist:
  114. data = pd.read_parquet(os.path.join(file_path, dir))
  115. for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
  116. query = data.iloc[i]['question']
  117. for rel, text in zip(data.iloc[i]["search_results"]['rank'],
  118. data.iloc[i]["search_results"]['search_context']):
  119. d = {
  120. "id": get_uuid()
  121. }
  122. tokenize(d, text, "english")
  123. docs.append(d)
  124. texts[d["id"]] = text
  125. qrels[query][d["id"]] = int(rel)
  126. if len(docs) >= 32:
  127. docs = self.embedding(docs)
  128. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  129. docs = []
  130. docs = self.embedding(docs)
  131. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  132. return qrels, texts
  133. def miracl_index(self, file_path, corpus_path, index_name):
  134. corpus_total = {}
  135. for corpus_file in os.listdir(corpus_path):
  136. tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
  137. for index, i in tmp_data.iterrows():
  138. corpus_total[i['docid']] = i['text']
  139. topics_total = {}
  140. for topics_file in os.listdir(os.path.join(file_path, 'topics')):
  141. if 'test' in topics_file:
  142. continue
  143. tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
  144. for index, i in tmp_data.iterrows():
  145. topics_total[i['qid']] = i['query']
  146. qrels = defaultdict(dict)
  147. texts = defaultdict(dict)
  148. docs = []
  149. for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
  150. if 'test' in qrels_file:
  151. continue
  152. tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
  153. names=['qid', 'Q0', 'docid', 'relevance'])
  154. for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
  155. query = topics_total[tmp_data.iloc[i]['qid']]
  156. text = corpus_total[tmp_data.iloc[i]['docid']]
  157. rel = tmp_data.iloc[i]['relevance']
  158. d = {
  159. "id": get_uuid()
  160. }
  161. tokenize(d, text, 'english')
  162. docs.append(d)
  163. texts[d["id"]] = text
  164. qrels[query][d["id"]] = int(rel)
  165. if len(docs) >= 32:
  166. docs = self.embedding(docs)
  167. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  168. docs = []
  169. docs = self.embedding(docs)
  170. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  171. return qrels, texts
  172. def save_results(self, qrels, run, texts, dataset, file_path):
  173. keep_result = []
  174. run_keys = list(run.keys())
  175. for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
  176. key = run_keys[run_i]
  177. keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
  178. 'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
  179. keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
  180. with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
  181. f.write('## Score For Every Query\n')
  182. for keep_result_i in keep_result:
  183. f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
  184. scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
  185. scores = sorted(scores, key=lambda kk: kk[1])
  186. for score in scores[:10]:
  187. f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
  188. json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+"), indent=2)
  189. json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+"), indent=2)
  190. print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
  191. def __call__(self, dataset, file_path, miracl_corpus=''):
  192. if dataset == "ms_marco_v1.1":
  193. qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
  194. run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
  195. print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
  196. self.save_results(qrels, run, texts, dataset, file_path)
  197. if dataset == "trivia_qa":
  198. qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
  199. run = self._get_retrieval(qrels, "benchmark_trivia_qa")
  200. print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
  201. self.save_results(qrels, run, texts, dataset, file_path)
  202. if dataset == "miracl":
  203. for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
  204. 'yo', 'zh']:
  205. if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
  206. print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
  207. continue
  208. if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
  209. print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
  210. continue
  211. if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
  212. print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
  213. continue
  214. if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
  215. print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
  216. continue
  217. qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
  218. os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
  219. "benchmark_miracl_" + lang)
  220. run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
  221. print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
  222. self.save_results(qrels, run, texts, dataset, file_path)
  223. if __name__ == '__main__':
  224. print('*****************RAGFlow Benchmark*****************')
  225. kb_id = input('Please input kb_id:\n')
  226. ex = Benchmark(kb_id)
  227. dataset = input(
  228. 'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
  229. if dataset in ['ms_marco_v1.1', 'trivia_qa']:
  230. if dataset == "ms_marco_v1.1":
  231. print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
  232. dataset_path = input('Please input ' + dataset + ' dataset path:\n')
  233. ex(dataset, dataset_path)
  234. elif dataset == 'miracl':
  235. dataset_path = input('Please input ' + dataset + ' dataset path:\n')
  236. corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
  237. ex(dataset, dataset_path, miracl_corpus=corpus_path)
  238. else:
  239. print("Dataset: ", dataset, "not supported!")