| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- {
- "id": 20,
- "title": "Report Agent Using Knowledge Base",
- "description": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
- "canvas_type": "Agent",
- "dsl": {
- "components": {
- "Agent:NewPumasLick": {
- "downstream": [
- "Message:OrangeYearsShine"
- ],
- "obj": {
- "component_name": "Agent",
- "params": {
- "delay_after_error": 1,
- "description": "",
- "exception_comment": "",
- "exception_default_value": "",
- "exception_goto": [],
- "exception_method": null,
- "frequencyPenaltyEnabled": false,
- "frequency_penalty": 0.5,
- "llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
- "maxTokensEnabled": true,
- "max_retries": 3,
- "max_rounds": 3,
- "max_tokens": 128000,
- "mcp": [],
- "message_history_window_size": 12,
- "outputs": {
- "content": {
- "type": "string",
- "value": ""
- }
- },
- "parameter": "Precise",
- "presencePenaltyEnabled": false,
- "presence_penalty": 0.5,
- "prompts": [
- {
- "content": "# User Query\n {sys.query}",
- "role": "user"
- }
- ],
- "sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
- "temperature": "0.1",
- "temperatureEnabled": true,
- "tools": [
- {
- "component_name": "Retrieval",
- "name": "Retrieval",
- "params": {
- "cross_languages": [],
- "description": "",
- "empty_response": "",
- "kb_ids": [],
- "keywords_similarity_weight": 0.7,
- "outputs": {
- "formalized_content": {
- "type": "string",
- "value": ""
- }
- },
- "rerank_id": "",
- "similarity_threshold": 0.2,
- "top_k": 1024,
- "top_n": 8,
- "use_kg": false
- }
- }
- ],
- "topPEnabled": false,
- "top_p": 0.75,
- "user_prompt": "",
- "visual_files_var": ""
- }
- },
- "upstream": [
- "begin"
- ]
- },
- "Message:OrangeYearsShine": {
- "downstream": [],
- "obj": {
- "component_name": "Message",
- "params": {
- "content": [
- "{Agent:NewPumasLick@content}"
- ]
- }
- },
- "upstream": [
- "Agent:NewPumasLick"
- ]
- },
- "begin": {
- "downstream": [
- "Agent:NewPumasLick"
- ],
- "obj": {
- "component_name": "Begin",
- "params": {
- "enablePrologue": true,
- "inputs": {},
- "mode": "conversational",
- "prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
- }
- },
- "upstream": []
- }
- },
- "globals": {
- "sys.conversation_turns": 0,
- "sys.files": [],
- "sys.query": "",
- "sys.user_id": ""
- },
- "graph": {
- "edges": [
- {
- "data": {
- "isHovered": false
- },
- "id": "xy-edge__beginstart-Agent:NewPumasLickend",
- "source": "begin",
- "sourceHandle": "start",
- "target": "Agent:NewPumasLick",
- "targetHandle": "end"
- },
- {
- "data": {
- "isHovered": false
- },
- "id": "xy-edge__Agent:NewPumasLickstart-Message:OrangeYearsShineend",
- "markerEnd": "logo",
- "source": "Agent:NewPumasLick",
- "sourceHandle": "start",
- "style": {
- "stroke": "rgba(91, 93, 106, 1)",
- "strokeWidth": 1
- },
- "target": "Message:OrangeYearsShine",
- "targetHandle": "end",
- "type": "buttonEdge",
- "zIndex": 1001
- },
- {
- "data": {
- "isHovered": false
- },
- "id": "xy-edge__Agent:NewPumasLicktool-Tool:AllBirdsNailend",
- "selected": false,
- "source": "Agent:NewPumasLick",
- "sourceHandle": "tool",
- "target": "Tool:AllBirdsNail",
- "targetHandle": "end"
- }
- ],
- "nodes": [
- {
- "data": {
- "form": {
- "enablePrologue": true,
- "inputs": {},
- "mode": "conversational",
- "prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
- },
- "label": "Begin",
- "name": "begin"
- },
- "dragging": false,
- "id": "begin",
- "measured": {
- "height": 48,
- "width": 200
- },
- "position": {
- "x": -9.569875358221438,
- "y": 205.84018385864917
- },
- "selected": false,
- "sourcePosition": "left",
- "targetPosition": "right",
- "type": "beginNode"
- },
- {
- "data": {
- "form": {
- "content": [
- "{Agent:NewPumasLick@content}"
- ]
- },
- "label": "Message",
- "name": "Response"
- },
- "dragging": false,
- "id": "Message:OrangeYearsShine",
- "measured": {
- "height": 56,
- "width": 200
- },
- "position": {
- "x": 734.4061285881053,
- "y": 199.9706031723009
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "messageNode"
- },
- {
- "data": {
- "form": {
- "delay_after_error": 1,
- "description": "",
- "exception_comment": "",
- "exception_default_value": "",
- "exception_goto": [],
- "exception_method": null,
- "frequencyPenaltyEnabled": false,
- "frequency_penalty": 0.5,
- "llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
- "maxTokensEnabled": true,
- "max_retries": 3,
- "max_rounds": 3,
- "max_tokens": 128000,
- "mcp": [],
- "message_history_window_size": 12,
- "outputs": {
- "content": {
- "type": "string",
- "value": ""
- }
- },
- "parameter": "Precise",
- "presencePenaltyEnabled": false,
- "presence_penalty": 0.5,
- "prompts": [
- {
- "content": "# User Query\n {sys.query}",
- "role": "user"
- }
- ],
- "sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
- "temperature": "0.1",
- "temperatureEnabled": true,
- "tools": [
- {
- "component_name": "Retrieval",
- "name": "Retrieval",
- "params": {
- "cross_languages": [],
- "description": "",
- "empty_response": "",
- "kb_ids": [],
- "keywords_similarity_weight": 0.7,
- "outputs": {
- "formalized_content": {
- "type": "string",
- "value": ""
- }
- },
- "rerank_id": "",
- "similarity_threshold": 0.2,
- "top_k": 1024,
- "top_n": 8,
- "use_kg": false
- }
- }
- ],
- "topPEnabled": false,
- "top_p": 0.75,
- "user_prompt": "",
- "visual_files_var": ""
- },
- "label": "Agent",
- "name": "Knowledge Base Agent"
- },
- "dragging": false,
- "id": "Agent:NewPumasLick",
- "measured": {
- "height": 84,
- "width": 200
- },
- "position": {
- "x": 347.00048227952215,
- "y": 186.49109364794631
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "agentNode"
- },
- {
- "data": {
- "form": {
- "description": "This is an agent for a specific task.",
- "user_prompt": "This is the order you need to send to the agent."
- },
- "label": "Tool",
- "name": "flow.tool_10"
- },
- "dragging": false,
- "id": "Tool:AllBirdsNail",
- "measured": {
- "height": 48,
- "width": 200
- },
- "position": {
- "x": 220.24819746977118,
- "y": 403.31576836482583
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "toolNode"
- }
- ]
- },
- "history": [],
- "memory": [],
- "messages": [],
- "path": [],
- "retrieval": []
- },
- "avatar": ""
- }
|