Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import re
  18. import traceback
  19. from copy import deepcopy
  20. import trio
  21. from flask import Response, request
  22. from flask_login import current_user, login_required
  23. from api import settings
  24. from api.db import LLMType
  25. from api.db.db_models import APIToken
  26. from api.db.services.conversation_service import ConversationService, structure_answer
  27. from api.db.services.dialog_service import DialogService, ask, chat
  28. from api.db.services.knowledgebase_service import KnowledgebaseService
  29. from api.db.services.llm_service import LLMBundle, TenantService
  30. from api.db.services.user_service import UserTenantService
  31. from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
  32. from graphrag.general.mind_map_extractor import MindMapExtractor
  33. from rag.app.tag import label_question
  34. @manager.route("/set", methods=["POST"]) # noqa: F821
  35. @login_required
  36. def set_conversation():
  37. req = request.json
  38. conv_id = req.get("conversation_id")
  39. is_new = req.get("is_new")
  40. del req["is_new"]
  41. if not is_new:
  42. del req["conversation_id"]
  43. try:
  44. if not ConversationService.update_by_id(conv_id, req):
  45. return get_data_error_result(message="Conversation not found!")
  46. e, conv = ConversationService.get_by_id(conv_id)
  47. if not e:
  48. return get_data_error_result(message="Fail to update a conversation!")
  49. conv = conv.to_dict()
  50. return get_json_result(data=conv)
  51. except Exception as e:
  52. return server_error_response(e)
  53. try:
  54. e, dia = DialogService.get_by_id(req["dialog_id"])
  55. if not e:
  56. return get_data_error_result(message="Dialog not found")
  57. conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": req.get("name", "New conversation"), "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]}
  58. ConversationService.save(**conv)
  59. return get_json_result(data=conv)
  60. except Exception as e:
  61. return server_error_response(e)
  62. @manager.route("/get", methods=["GET"]) # noqa: F821
  63. @login_required
  64. def get():
  65. conv_id = request.args["conversation_id"]
  66. try:
  67. e, conv = ConversationService.get_by_id(conv_id)
  68. if not e:
  69. return get_data_error_result(message="Conversation not found!")
  70. tenants = UserTenantService.query(user_id=current_user.id)
  71. avatar = None
  72. for tenant in tenants:
  73. dialog = DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id)
  74. if dialog and len(dialog) > 0:
  75. avatar = dialog[0].icon
  76. break
  77. else:
  78. return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
  79. def get_value(d, k1, k2):
  80. return d.get(k1, d.get(k2))
  81. for ref in conv.reference:
  82. if isinstance(ref, list):
  83. continue
  84. ref["chunks"] = [
  85. {
  86. "id": get_value(ck, "chunk_id", "id"),
  87. "content": get_value(ck, "content", "content_with_weight"),
  88. "document_id": get_value(ck, "doc_id", "document_id"),
  89. "document_name": get_value(ck, "docnm_kwd", "document_name"),
  90. "dataset_id": get_value(ck, "kb_id", "dataset_id"),
  91. "image_id": get_value(ck, "image_id", "img_id"),
  92. "positions": get_value(ck, "positions", "position_int"),
  93. }
  94. for ck in ref.get("chunks", [])
  95. ]
  96. conv = conv.to_dict()
  97. conv["avatar"] = avatar
  98. return get_json_result(data=conv)
  99. except Exception as e:
  100. return server_error_response(e)
  101. @manager.route("/getsse/<dialog_id>", methods=["GET"]) # type: ignore # noqa: F821
  102. def getsse(dialog_id):
  103. token = request.headers.get("Authorization").split()
  104. if len(token) != 2:
  105. return get_data_error_result(message='Authorization is not valid!"')
  106. token = token[1]
  107. objs = APIToken.query(beta=token)
  108. if not objs:
  109. return get_data_error_result(message='Authentication error: API key is invalid!"')
  110. try:
  111. e, conv = DialogService.get_by_id(dialog_id)
  112. if not e:
  113. return get_data_error_result(message="Dialog not found!")
  114. conv = conv.to_dict()
  115. conv["avatar"] = conv["icon"]
  116. del conv["icon"]
  117. return get_json_result(data=conv)
  118. except Exception as e:
  119. return server_error_response(e)
  120. @manager.route("/rm", methods=["POST"]) # noqa: F821
  121. @login_required
  122. def rm():
  123. conv_ids = request.json["conversation_ids"]
  124. try:
  125. for cid in conv_ids:
  126. exist, conv = ConversationService.get_by_id(cid)
  127. if not exist:
  128. return get_data_error_result(message="Conversation not found!")
  129. tenants = UserTenantService.query(user_id=current_user.id)
  130. for tenant in tenants:
  131. if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
  132. break
  133. else:
  134. return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
  135. ConversationService.delete_by_id(cid)
  136. return get_json_result(data=True)
  137. except Exception as e:
  138. return server_error_response(e)
  139. @manager.route("/list", methods=["GET"]) # noqa: F821
  140. @login_required
  141. def list_convsersation():
  142. dialog_id = request.args["dialog_id"]
  143. try:
  144. if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
  145. return get_json_result(data=False, message="Only owner of dialog authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
  146. convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
  147. convs = [d.to_dict() for d in convs]
  148. return get_json_result(data=convs)
  149. except Exception as e:
  150. return server_error_response(e)
  151. @manager.route("/completion", methods=["POST"]) # noqa: F821
  152. @login_required
  153. @validate_request("conversation_id", "messages")
  154. def completion():
  155. req = request.json
  156. msg = []
  157. for m in req["messages"]:
  158. if m["role"] == "system":
  159. continue
  160. if m["role"] == "assistant" and not msg:
  161. continue
  162. msg.append(m)
  163. message_id = msg[-1].get("id")
  164. try:
  165. e, conv = ConversationService.get_by_id(req["conversation_id"])
  166. if not e:
  167. return get_data_error_result(message="Conversation not found!")
  168. conv.message = deepcopy(req["messages"])
  169. e, dia = DialogService.get_by_id(conv.dialog_id)
  170. if not e:
  171. return get_data_error_result(message="Dialog not found!")
  172. del req["conversation_id"]
  173. del req["messages"]
  174. if not conv.reference:
  175. conv.reference = []
  176. else:
  177. def get_value(d, k1, k2):
  178. return d.get(k1, d.get(k2))
  179. for ref in conv.reference:
  180. if isinstance(ref, list):
  181. continue
  182. ref["chunks"] = [
  183. {
  184. "id": get_value(ck, "chunk_id", "id"),
  185. "content": get_value(ck, "content", "content_with_weight"),
  186. "document_id": get_value(ck, "doc_id", "document_id"),
  187. "document_name": get_value(ck, "docnm_kwd", "document_name"),
  188. "dataset_id": get_value(ck, "kb_id", "dataset_id"),
  189. "image_id": get_value(ck, "image_id", "img_id"),
  190. "positions": get_value(ck, "positions", "position_int"),
  191. }
  192. for ck in ref.get("chunks", [])
  193. ]
  194. if not conv.reference:
  195. conv.reference = []
  196. conv.reference.append({"chunks": [], "doc_aggs": []})
  197. def stream():
  198. nonlocal dia, msg, req, conv
  199. try:
  200. for ans in chat(dia, msg, True, **req):
  201. ans = structure_answer(conv, ans, message_id, conv.id)
  202. yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
  203. ConversationService.update_by_id(conv.id, conv.to_dict())
  204. except Exception as e:
  205. traceback.print_exc()
  206. yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
  207. yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
  208. if req.get("stream", True):
  209. resp = Response(stream(), mimetype="text/event-stream")
  210. resp.headers.add_header("Cache-control", "no-cache")
  211. resp.headers.add_header("Connection", "keep-alive")
  212. resp.headers.add_header("X-Accel-Buffering", "no")
  213. resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
  214. return resp
  215. else:
  216. answer = None
  217. for ans in chat(dia, msg, **req):
  218. answer = structure_answer(conv, ans, message_id, req["conversation_id"])
  219. ConversationService.update_by_id(conv.id, conv.to_dict())
  220. break
  221. return get_json_result(data=answer)
  222. except Exception as e:
  223. return server_error_response(e)
  224. @manager.route("/tts", methods=["POST"]) # noqa: F821
  225. @login_required
  226. def tts():
  227. req = request.json
  228. text = req["text"]
  229. tenants = TenantService.get_info_by(current_user.id)
  230. if not tenants:
  231. return get_data_error_result(message="Tenant not found!")
  232. tts_id = tenants[0]["tts_id"]
  233. if not tts_id:
  234. return get_data_error_result(message="No default TTS model is set")
  235. tts_mdl = LLMBundle(tenants[0]["tenant_id"], LLMType.TTS, tts_id)
  236. def stream_audio():
  237. try:
  238. for txt in re.split(r"[,。/《》?;:!\n\r:;]+", text):
  239. for chunk in tts_mdl.tts(txt):
  240. yield chunk
  241. except Exception as e:
  242. yield ("data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e)}}, ensure_ascii=False)).encode("utf-8")
  243. resp = Response(stream_audio(), mimetype="audio/mpeg")
  244. resp.headers.add_header("Cache-Control", "no-cache")
  245. resp.headers.add_header("Connection", "keep-alive")
  246. resp.headers.add_header("X-Accel-Buffering", "no")
  247. return resp
  248. @manager.route("/delete_msg", methods=["POST"]) # noqa: F821
  249. @login_required
  250. @validate_request("conversation_id", "message_id")
  251. def delete_msg():
  252. req = request.json
  253. e, conv = ConversationService.get_by_id(req["conversation_id"])
  254. if not e:
  255. return get_data_error_result(message="Conversation not found!")
  256. conv = conv.to_dict()
  257. for i, msg in enumerate(conv["message"]):
  258. if req["message_id"] != msg.get("id", ""):
  259. continue
  260. assert conv["message"][i + 1]["id"] == req["message_id"]
  261. conv["message"].pop(i)
  262. conv["message"].pop(i)
  263. conv["reference"].pop(max(0, i // 2 - 1))
  264. break
  265. ConversationService.update_by_id(conv["id"], conv)
  266. return get_json_result(data=conv)
  267. @manager.route("/thumbup", methods=["POST"]) # noqa: F821
  268. @login_required
  269. @validate_request("conversation_id", "message_id")
  270. def thumbup():
  271. req = request.json
  272. e, conv = ConversationService.get_by_id(req["conversation_id"])
  273. if not e:
  274. return get_data_error_result(message="Conversation not found!")
  275. up_down = req.get("thumbup")
  276. feedback = req.get("feedback", "")
  277. conv = conv.to_dict()
  278. for i, msg in enumerate(conv["message"]):
  279. if req["message_id"] == msg.get("id", "") and msg.get("role", "") == "assistant":
  280. if up_down:
  281. msg["thumbup"] = True
  282. if "feedback" in msg:
  283. del msg["feedback"]
  284. else:
  285. msg["thumbup"] = False
  286. if feedback:
  287. msg["feedback"] = feedback
  288. break
  289. ConversationService.update_by_id(conv["id"], conv)
  290. return get_json_result(data=conv)
  291. @manager.route("/ask", methods=["POST"]) # noqa: F821
  292. @login_required
  293. @validate_request("question", "kb_ids")
  294. def ask_about():
  295. req = request.json
  296. uid = current_user.id
  297. def stream():
  298. nonlocal req, uid
  299. try:
  300. for ans in ask(req["question"], req["kb_ids"], uid):
  301. yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
  302. except Exception as e:
  303. yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
  304. yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
  305. resp = Response(stream(), mimetype="text/event-stream")
  306. resp.headers.add_header("Cache-control", "no-cache")
  307. resp.headers.add_header("Connection", "keep-alive")
  308. resp.headers.add_header("X-Accel-Buffering", "no")
  309. resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
  310. return resp
  311. @manager.route("/mindmap", methods=["POST"]) # noqa: F821
  312. @login_required
  313. @validate_request("question", "kb_ids")
  314. def mindmap():
  315. req = request.json
  316. kb_ids = req["kb_ids"]
  317. e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
  318. if not e:
  319. return get_data_error_result(message="Knowledgebase not found!")
  320. embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
  321. chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
  322. question = req["question"]
  323. ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12, 0.3, 0.3, aggs=False, rank_feature=label_question(question, [kb]))
  324. mindmap = MindMapExtractor(chat_mdl)
  325. mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
  326. mind_map = mind_map.output
  327. if "error" in mind_map:
  328. return server_error_response(Exception(mind_map["error"]))
  329. return get_json_result(data=mind_map)
  330. @manager.route("/related_questions", methods=["POST"]) # noqa: F821
  331. @login_required
  332. @validate_request("question")
  333. def related_questions():
  334. req = request.json
  335. question = req["question"]
  336. chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
  337. prompt = """
  338. Role: You are an AI language model assistant tasked with generating 5-10 related questions based on a user’s original query. These questions should help expand the search query scope and improve search relevance.
  339. Instructions:
  340. Input: You are provided with a user’s question.
  341. Output: Generate 5-10 alternative questions that are related to the original user question. These alternatives should help retrieve a broader range of relevant documents from a vector database.
  342. Context: Focus on rephrasing the original question in different ways, making sure the alternative questions are diverse but still connected to the topic of the original query. Do not create overly obscure, irrelevant, or unrelated questions.
  343. Fallback: If you cannot generate any relevant alternatives, do not return any questions.
  344. Guidance:
  345. 1. Each alternative should be unique but still relevant to the original query.
  346. 2. Keep the phrasing clear, concise, and easy to understand.
  347. 3. Avoid overly technical jargon or specialized terms unless directly relevant.
  348. 4. Ensure that each question contributes towards improving search results by broadening the search angle, not narrowing it.
  349. Example:
  350. Original Question: What are the benefits of electric vehicles?
  351. Alternative Questions:
  352. 1. How do electric vehicles impact the environment?
  353. 2. What are the advantages of owning an electric car?
  354. 3. What is the cost-effectiveness of electric vehicles?
  355. 4. How do electric vehicles compare to traditional cars in terms of fuel efficiency?
  356. 5. What are the environmental benefits of switching to electric cars?
  357. 6. How do electric vehicles help reduce carbon emissions?
  358. 7. Why are electric vehicles becoming more popular?
  359. 8. What are the long-term savings of using electric vehicles?
  360. 9. How do electric vehicles contribute to sustainability?
  361. 10. What are the key benefits of electric vehicles for consumers?
  362. Reason:
  363. Rephrasing the original query into multiple alternative questions helps the user explore different aspects of their search topic, improving the quality of search results.
  364. These questions guide the search engine to provide a more comprehensive set of relevant documents.
  365. """
  366. ans = chat_mdl.chat(
  367. prompt,
  368. [
  369. {
  370. "role": "user",
  371. "content": f"""
  372. Keywords: {question}
  373. Related search terms:
  374. """,
  375. }
  376. ],
  377. {"temperature": 0.9},
  378. )
  379. return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])