| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import re
- from functools import partial
- from agentic_reasoning.prompts import BEGIN_SEARCH_QUERY, BEGIN_SEARCH_RESULT, END_SEARCH_RESULT, MAX_SEARCH_LIMIT, \
- END_SEARCH_QUERY, REASON_PROMPT, RELEVANT_EXTRACTION_PROMPT
- from api.db.services.llm_service import LLMBundle
- from rag.nlp import extract_between
- from rag.prompts import kb_prompt
- from rag.utils.tavily_conn import Tavily
-
-
- class DeepResearcher:
- def __init__(self,
- chat_mdl: LLMBundle,
- prompt_config: dict,
- kb_retrieve: partial = None,
- kg_retrieve: partial = None
- ):
- self.chat_mdl = chat_mdl
- self.prompt_config = prompt_config
- self._kb_retrieve = kb_retrieve
- self._kg_retrieve = kg_retrieve
-
- @staticmethod
- def _remove_query_tags(text):
- """Remove query tags from text"""
- pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY)
- return re.sub(pattern, "", text)
-
- @staticmethod
- def _remove_result_tags(text):
- """Remove result tags from text"""
- pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT)
- return re.sub(pattern, "", text)
-
- def _generate_reasoning(self, msg_history):
- """Generate reasoning steps"""
- query_think = ""
- if msg_history[-1]["role"] != "user":
- msg_history.append({"role": "user", "content": "Continues reasoning with the new information.\n"})
- else:
- msg_history[-1]["content"] += "\n\nContinues reasoning with the new information.\n"
-
- for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_history, {"temperature": 0.7}):
- ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
- if not ans:
- continue
- query_think = ans
- yield query_think
- return query_think
-
- def _extract_search_queries(self, query_think, question, step_index):
- """Extract search queries from thinking"""
- queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)
- if not queries and step_index == 0:
- # If this is the first step and no queries are found, use the original question as the query
- queries = [question]
- return queries
-
- def _truncate_previous_reasoning(self, all_reasoning_steps):
- """Truncate previous reasoning steps to maintain a reasonable length"""
- truncated_prev_reasoning = ""
- for i, step in enumerate(all_reasoning_steps):
- truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n"
-
- prev_steps = truncated_prev_reasoning.split('\n\n')
- if len(prev_steps) <= 5:
- truncated_prev_reasoning = '\n\n'.join(prev_steps)
- else:
- truncated_prev_reasoning = ''
- for i, step in enumerate(prev_steps):
- if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step:
- truncated_prev_reasoning += step + '\n\n'
- else:
- if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n':
- truncated_prev_reasoning += '...\n\n'
-
- return truncated_prev_reasoning.strip('\n')
-
- def _retrieve_information(self, search_query):
- """Retrieve information from different sources"""
- # 1. Knowledge base retrieval
- kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []}
-
- # 2. Web retrieval (if Tavily API is configured)
- if self.prompt_config.get("tavily_api_key"):
- tav = Tavily(self.prompt_config["tavily_api_key"])
- tav_res = tav.retrieve_chunks(search_query)
- kbinfos["chunks"].extend(tav_res["chunks"])
- kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
-
- # 3. Knowledge graph retrieval (if configured)
- if self.prompt_config.get("use_kg") and self._kg_retrieve:
- ck = self._kg_retrieve(question=search_query)
- if ck["content_with_weight"]:
- kbinfos["chunks"].insert(0, ck)
-
- return kbinfos
-
- def _update_chunk_info(self, chunk_info, kbinfos):
- """Update chunk information for citations"""
- if not chunk_info["chunks"]:
- # If this is the first retrieval, use the retrieval results directly
- for k in chunk_info.keys():
- chunk_info[k] = kbinfos[k]
- else:
- # Merge newly retrieved information, avoiding duplicates
- cids = [c["chunk_id"] for c in chunk_info["chunks"]]
- for c in kbinfos["chunks"]:
- if c["chunk_id"] not in cids:
- chunk_info["chunks"].append(c)
-
- dids = [d["doc_id"] for d in chunk_info["doc_aggs"]]
- for d in kbinfos["doc_aggs"]:
- if d["doc_id"] not in dids:
- chunk_info["doc_aggs"].append(d)
-
- def _extract_relevant_info(self, truncated_prev_reasoning, search_query, kbinfos):
- """Extract and summarize relevant information"""
- summary_think = ""
- for ans in self.chat_mdl.chat_streamly(
- RELEVANT_EXTRACTION_PROMPT.format(
- prev_reasoning=truncated_prev_reasoning,
- search_query=search_query,
- document="\n".join(kb_prompt(kbinfos, 4096))
- ),
- [{"role": "user",
- "content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}],
- {"temperature": 0.7}):
- ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
- if not ans:
- continue
- summary_think = ans
- yield summary_think
-
- return summary_think
-
- def thinking(self, chunk_info: dict, question: str):
- executed_search_queries = []
- msg_history = [{"role": "user", "content": f'Question:\"{question}\"\n'}]
- all_reasoning_steps = []
- think = "<think>"
-
- for step_index in range(MAX_SEARCH_LIMIT + 1):
- # Check if the maximum search limit has been reached
- if step_index == MAX_SEARCH_LIMIT - 1:
- summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n"
- yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
- all_reasoning_steps.append(summary_think)
- msg_history.append({"role": "assistant", "content": summary_think})
- break
-
- # Step 1: Generate reasoning
- query_think = ""
- for ans in self._generate_reasoning(msg_history):
- query_think = ans
- yield {"answer": think + self._remove_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None}
-
- think += self._remove_query_tags(query_think)
- all_reasoning_steps.append(query_think)
-
- # Step 2: Extract search queries
- queries = self._extract_search_queries(query_think, question, step_index)
- if not queries and step_index > 0:
- # If not the first step and no queries, end the search process
- break
-
- # Process each search query
- for search_query in queries:
- logging.info(f"[THINK]Query: {step_index}. {search_query}")
- msg_history.append({"role": "assistant", "content": search_query})
- think += f"\n\n> {step_index + 1}. {search_query}\n\n"
- yield {"answer": think + "</think>", "reference": {}, "audio_binary": None}
-
- # Check if the query has already been executed
- if search_query in executed_search_queries:
- summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n"
- yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
- all_reasoning_steps.append(summary_think)
- msg_history.append({"role": "user", "content": summary_think})
- think += summary_think
- continue
-
- executed_search_queries.append(search_query)
-
- # Step 3: Truncate previous reasoning steps
- truncated_prev_reasoning = self._truncate_previous_reasoning(all_reasoning_steps)
-
- # Step 4: Retrieve information
- kbinfos = self._retrieve_information(search_query)
-
- # Step 5: Update chunk information
- self._update_chunk_info(chunk_info, kbinfos)
-
- # Step 6: Extract relevant information
- think += "\n\n"
- summary_think = ""
- for ans in self._extract_relevant_info(truncated_prev_reasoning, search_query, kbinfos):
- summary_think = ans
- yield {"answer": think + self._remove_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None}
-
- all_reasoning_steps.append(summary_think)
- msg_history.append(
- {"role": "user", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"})
- think += self._remove_result_tags(summary_think)
- logging.info(f"[THINK]Summary: {step_index}. {summary_think}")
-
- yield think + "</think>"
|