| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import requests
-
- from .modules.chat import Chat
- from .modules.chunk import Chunk
- from .modules.dataset import DataSet
- from .modules.agent import Agent
-
-
- class RAGFlow:
- def __init__(self, api_key, base_url, version='v1'):
- """
- api_url: http://<host_address>/api/v1
- """
- self.user_key = api_key
- self.api_url = f"{base_url}/api/{version}"
- self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)}
-
- def post(self, path, json=None, stream=False, files=None):
- res = requests.post(url=self.api_url + path, json=json, headers=self.authorization_header, stream=stream,files=files)
- return res
-
- def get(self, path, params=None, json=None):
- res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header,json=json)
- return res
-
- def delete(self, path, json):
- res = requests.delete(url=self.api_url + path, json=json, headers=self.authorization_header)
- return res
-
- def put(self, path, json):
- res = requests.put(url=self.api_url + path, json= json,headers=self.authorization_header)
- return res
-
- def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English",
- permission: str = "me",chunk_method: str = "naive",
- parser_config: DataSet.ParserConfig = None) -> DataSet:
- if parser_config:
- parser_config = parser_config.to_json()
- res = self.post("/datasets",
- {"name": name, "avatar": avatar, "description": description, "language": language,
- "permission": permission, "chunk_method": chunk_method,
- "parser_config": parser_config
- }
- )
- res = res.json()
- if res.get("code") == 0:
- return DataSet(self, res["data"])
- raise Exception(res["message"])
-
- def delete_datasets(self, ids: list[str] | None = None):
- res = self.delete("/datasets",{"ids": ids})
- res=res.json()
- if res.get("code") != 0:
- raise Exception(res["message"])
-
- def get_dataset(self,name: str):
- _list = self.list_datasets(name=name)
- if len(_list) > 0:
- return _list[0]
- raise Exception("Dataset %s not found" % name)
-
- def list_datasets(self, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True,
- id: str | None = None, name: str | None = None) -> \
- list[DataSet]:
- res = self.get("/datasets",
- {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
- res = res.json()
- result_list = []
- if res.get("code") == 0:
- for data in res['data']:
- result_list.append(DataSet(self, data))
- return result_list
- raise Exception(res["message"])
-
- def create_chat(self, name: str, avatar: str = "", dataset_ids=None,
- llm: Chat.LLM | None = None, prompt: Chat.Prompt | None = None) -> Chat:
- if dataset_ids is None:
- dataset_ids = []
- dataset_list = []
- for id in dataset_ids:
- dataset_list.append(id)
-
- if llm is None:
- llm = Chat.LLM(self, {"model_name": None,
- "temperature": 0.1,
- "top_p": 0.3,
- "presence_penalty": 0.4,
- "frequency_penalty": 0.7,
- "max_tokens": 512, })
- if prompt is None:
- prompt = Chat.Prompt(self, {"similarity_threshold": 0.2,
- "keywords_similarity_weight": 0.7,
- "top_n": 8,
- "variables": [{
- "key": "knowledge",
- "optional": True
- }], "rerank_model": "",
- "empty_response": None,
- "opener": None,
- "show_quote": True,
- "prompt": None})
- if prompt.opener is None:
- prompt.opener = "Hi! I'm your assistant, what can I do for you?"
- if prompt.prompt is None:
- prompt.prompt = (
- "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
- "Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
- "your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
- "Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
- )
-
- temp_dict = {"name": name,
- "avatar": avatar,
- "dataset_ids": dataset_list,
- "llm": llm.to_json(),
- "prompt": prompt.to_json()}
- res = self.post("/chats", temp_dict)
- res = res.json()
- if res.get("code") == 0:
- return Chat(self, res["data"])
- raise Exception(res["message"])
-
- def delete_chats(self,ids: list[str] | None = None):
- res = self.delete('/chats',
- {"ids":ids})
- res = res.json()
- if res.get("code") != 0:
- raise Exception(res["message"])
-
- def list_chats(self, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True,
- id: str | None = None, name: str | None = None) -> list[Chat]:
- res = self.get("/chats",{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
- res = res.json()
- result_list = []
- if res.get("code") == 0:
- for data in res['data']:
- result_list.append(Chat(self, data))
- return result_list
- raise Exception(res["message"])
-
-
- def retrieve(self, dataset_ids, document_ids=None, question="", page=1, page_size=30, similarity_threshold=0.2, vector_similarity_weight=0.3, top_k=1024, rerank_id: str | None = None, keyword:bool=False, ):
- if document_ids is None:
- document_ids = []
- data_json ={
- "page": page,
- "page_size": page_size,
- "similarity_threshold": similarity_threshold,
- "vector_similarity_weight": vector_similarity_weight,
- "top_k": top_k,
- "rerank_id": rerank_id,
- "keyword": keyword,
- "question": question,
- "dataset_ids": dataset_ids,
- "documents": document_ids
- }
- # Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
- res = self.post('/retrieval',json=data_json)
- res = res.json()
- if res.get("code") ==0:
- chunks=[]
- for chunk_data in res["data"].get("chunks"):
- chunk=Chunk(self,chunk_data)
- chunks.append(chunk)
- return chunks
- raise Exception(res.get("message"))
-
-
- def list_agents(self, page: int = 1, page_size: int = 30, orderby: str = "update_time", desc: bool = True,
- id: str | None = None, title: str | None = None) -> list[Agent]:
- res = self.get("/agents",{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "title": title})
- res = res.json()
- result_list = []
- if res.get("code") == 0:
- for data in res['data']:
- result_list.append(Agent(self, data))
- return result_list
- raise Exception(res["message"])
|