You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624
  1. # Licensed under the Apache License, Version 2.0 (the "License");
  2. # you may not use this file except in compliance with the License.
  3. # You may obtain a copy of the License at
  4. #
  5. # http://www.apache.org/licenses/LICENSE-2.0
  6. #
  7. # Unless required by applicable law or agreed to in writing, software
  8. # distributed under the License is distributed on an "AS IS" BASIS,
  9. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. # See the License for the specific language governing permissions and
  11. # limitations under the License.
  12. #
  13. import copy
  14. import time
  15. import os
  16. from huggingface_hub import snapshot_download
  17. from api.utils.file_utils import get_project_base_directory
  18. from .operators import * # noqa: F403
  19. import math
  20. import numpy as np
  21. import cv2
  22. import onnxruntime as ort
  23. from .postprocess import build_post_process
  24. def transform(data, ops=None):
  25. """ transform """
  26. if ops is None:
  27. ops = []
  28. for op in ops:
  29. data = op(data)
  30. if data is None:
  31. return None
  32. return data
  33. def create_operators(op_param_list, global_config=None):
  34. """
  35. create operators based on the config
  36. Args:
  37. params(list): a dict list, used to create some operators
  38. """
  39. assert isinstance(
  40. op_param_list, list), ('operator config should be a list')
  41. ops = []
  42. for operator in op_param_list:
  43. assert isinstance(operator,
  44. dict) and len(operator) == 1, "yaml format error"
  45. op_name = list(operator)[0]
  46. param = {} if operator[op_name] is None else operator[op_name]
  47. if global_config is not None:
  48. param.update(global_config)
  49. op = eval(op_name)(**param)
  50. ops.append(op)
  51. return ops
  52. def load_model(model_dir, nm):
  53. model_file_path = os.path.join(model_dir, nm + ".onnx")
  54. if not os.path.exists(model_file_path):
  55. raise ValueError("not find model file path {}".format(
  56. model_file_path))
  57. options = ort.SessionOptions()
  58. options.enable_cpu_mem_arena = False
  59. options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
  60. options.intra_op_num_threads = 2
  61. options.inter_op_num_threads = 2
  62. if False and ort.get_device() == "GPU":
  63. sess = ort.InferenceSession(
  64. model_file_path,
  65. options=options,
  66. providers=['CUDAExecutionProvider'])
  67. else:
  68. sess = ort.InferenceSession(
  69. model_file_path,
  70. options=options,
  71. providers=['CPUExecutionProvider'])
  72. return sess, sess.get_inputs()[0]
  73. class TextRecognizer(object):
  74. def __init__(self, model_dir):
  75. self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")]
  76. self.rec_batch_num = 16
  77. postprocess_params = {
  78. 'name': 'CTCLabelDecode',
  79. "character_dict_path": os.path.join(model_dir, "ocr.res"),
  80. "use_space_char": True
  81. }
  82. self.postprocess_op = build_post_process(postprocess_params)
  83. self.predictor, self.input_tensor = load_model(model_dir, 'rec')
  84. def resize_norm_img(self, img, max_wh_ratio):
  85. imgC, imgH, imgW = self.rec_image_shape
  86. assert imgC == img.shape[2]
  87. imgW = int((imgH * max_wh_ratio))
  88. w = self.input_tensor.shape[3:][0]
  89. if isinstance(w, str):
  90. pass
  91. elif w is not None and w > 0:
  92. imgW = w
  93. h, w = img.shape[:2]
  94. ratio = w / float(h)
  95. if math.ceil(imgH * ratio) > imgW:
  96. resized_w = imgW
  97. else:
  98. resized_w = int(math.ceil(imgH * ratio))
  99. resized_image = cv2.resize(img, (resized_w, imgH))
  100. resized_image = resized_image.astype('float32')
  101. resized_image = resized_image.transpose((2, 0, 1)) / 255
  102. resized_image -= 0.5
  103. resized_image /= 0.5
  104. padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
  105. padding_im[:, :, 0:resized_w] = resized_image
  106. return padding_im
  107. def resize_norm_img_vl(self, img, image_shape):
  108. imgC, imgH, imgW = image_shape
  109. img = img[:, :, ::-1] # bgr2rgb
  110. resized_image = cv2.resize(
  111. img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
  112. resized_image = resized_image.astype('float32')
  113. resized_image = resized_image.transpose((2, 0, 1)) / 255
  114. return resized_image
  115. def resize_norm_img_srn(self, img, image_shape):
  116. imgC, imgH, imgW = image_shape
  117. img_black = np.zeros((imgH, imgW))
  118. im_hei = img.shape[0]
  119. im_wid = img.shape[1]
  120. if im_wid <= im_hei * 1:
  121. img_new = cv2.resize(img, (imgH * 1, imgH))
  122. elif im_wid <= im_hei * 2:
  123. img_new = cv2.resize(img, (imgH * 2, imgH))
  124. elif im_wid <= im_hei * 3:
  125. img_new = cv2.resize(img, (imgH * 3, imgH))
  126. else:
  127. img_new = cv2.resize(img, (imgW, imgH))
  128. img_np = np.asarray(img_new)
  129. img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
  130. img_black[:, 0:img_np.shape[1]] = img_np
  131. img_black = img_black[:, :, np.newaxis]
  132. row, col, c = img_black.shape
  133. c = 1
  134. return np.reshape(img_black, (c, row, col)).astype(np.float32)
  135. def srn_other_inputs(self, image_shape, num_heads, max_text_length):
  136. imgC, imgH, imgW = image_shape
  137. feature_dim = int((imgH / 8) * (imgW / 8))
  138. encoder_word_pos = np.array(range(0, feature_dim)).reshape(
  139. (feature_dim, 1)).astype('int64')
  140. gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
  141. (max_text_length, 1)).astype('int64')
  142. gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
  143. gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
  144. [-1, 1, max_text_length, max_text_length])
  145. gsrm_slf_attn_bias1 = np.tile(
  146. gsrm_slf_attn_bias1,
  147. [1, num_heads, 1, 1]).astype('float32') * [-1e9]
  148. gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
  149. [-1, 1, max_text_length, max_text_length])
  150. gsrm_slf_attn_bias2 = np.tile(
  151. gsrm_slf_attn_bias2,
  152. [1, num_heads, 1, 1]).astype('float32') * [-1e9]
  153. encoder_word_pos = encoder_word_pos[np.newaxis, :]
  154. gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
  155. return [
  156. encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
  157. gsrm_slf_attn_bias2
  158. ]
  159. def process_image_srn(self, img, image_shape, num_heads, max_text_length):
  160. norm_img = self.resize_norm_img_srn(img, image_shape)
  161. norm_img = norm_img[np.newaxis, :]
  162. [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
  163. self.srn_other_inputs(image_shape, num_heads, max_text_length)
  164. gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
  165. gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
  166. encoder_word_pos = encoder_word_pos.astype(np.int64)
  167. gsrm_word_pos = gsrm_word_pos.astype(np.int64)
  168. return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
  169. gsrm_slf_attn_bias2)
  170. def resize_norm_img_sar(self, img, image_shape,
  171. width_downsample_ratio=0.25):
  172. imgC, imgH, imgW_min, imgW_max = image_shape
  173. h = img.shape[0]
  174. w = img.shape[1]
  175. valid_ratio = 1.0
  176. # make sure new_width is an integral multiple of width_divisor.
  177. width_divisor = int(1 / width_downsample_ratio)
  178. # resize
  179. ratio = w / float(h)
  180. resize_w = math.ceil(imgH * ratio)
  181. if resize_w % width_divisor != 0:
  182. resize_w = round(resize_w / width_divisor) * width_divisor
  183. if imgW_min is not None:
  184. resize_w = max(imgW_min, resize_w)
  185. if imgW_max is not None:
  186. valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
  187. resize_w = min(imgW_max, resize_w)
  188. resized_image = cv2.resize(img, (resize_w, imgH))
  189. resized_image = resized_image.astype('float32')
  190. # norm
  191. if image_shape[0] == 1:
  192. resized_image = resized_image / 255
  193. resized_image = resized_image[np.newaxis, :]
  194. else:
  195. resized_image = resized_image.transpose((2, 0, 1)) / 255
  196. resized_image -= 0.5
  197. resized_image /= 0.5
  198. resize_shape = resized_image.shape
  199. padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
  200. padding_im[:, :, 0:resize_w] = resized_image
  201. pad_shape = padding_im.shape
  202. return padding_im, resize_shape, pad_shape, valid_ratio
  203. def resize_norm_img_spin(self, img):
  204. img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  205. # return padding_im
  206. img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
  207. img = np.array(img, np.float32)
  208. img = np.expand_dims(img, -1)
  209. img = img.transpose((2, 0, 1))
  210. mean = [127.5]
  211. std = [127.5]
  212. mean = np.array(mean, dtype=np.float32)
  213. std = np.array(std, dtype=np.float32)
  214. mean = np.float32(mean.reshape(1, -1))
  215. stdinv = 1 / np.float32(std.reshape(1, -1))
  216. img -= mean
  217. img *= stdinv
  218. return img
  219. def resize_norm_img_svtr(self, img, image_shape):
  220. imgC, imgH, imgW = image_shape
  221. resized_image = cv2.resize(
  222. img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
  223. resized_image = resized_image.astype('float32')
  224. resized_image = resized_image.transpose((2, 0, 1)) / 255
  225. resized_image -= 0.5
  226. resized_image /= 0.5
  227. return resized_image
  228. def resize_norm_img_abinet(self, img, image_shape):
  229. imgC, imgH, imgW = image_shape
  230. resized_image = cv2.resize(
  231. img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
  232. resized_image = resized_image.astype('float32')
  233. resized_image = resized_image / 255.
  234. mean = np.array([0.485, 0.456, 0.406])
  235. std = np.array([0.229, 0.224, 0.225])
  236. resized_image = (
  237. resized_image - mean[None, None, ...]) / std[None, None, ...]
  238. resized_image = resized_image.transpose((2, 0, 1))
  239. resized_image = resized_image.astype('float32')
  240. return resized_image
  241. def norm_img_can(self, img, image_shape):
  242. img = cv2.cvtColor(
  243. img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
  244. if self.rec_image_shape[0] == 1:
  245. h, w = img.shape
  246. _, imgH, imgW = self.rec_image_shape
  247. if h < imgH or w < imgW:
  248. padding_h = max(imgH - h, 0)
  249. padding_w = max(imgW - w, 0)
  250. img_padded = np.pad(img, ((0, padding_h), (0, padding_w)),
  251. 'constant',
  252. constant_values=(255))
  253. img = img_padded
  254. img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w
  255. img = img.astype('float32')
  256. return img
  257. def __call__(self, img_list):
  258. img_num = len(img_list)
  259. # Calculate the aspect ratio of all text bars
  260. width_list = []
  261. for img in img_list:
  262. width_list.append(img.shape[1] / float(img.shape[0]))
  263. # Sorting can speed up the recognition process
  264. indices = np.argsort(np.array(width_list))
  265. rec_res = [['', 0.0]] * img_num
  266. batch_num = self.rec_batch_num
  267. st = time.time()
  268. for beg_img_no in range(0, img_num, batch_num):
  269. end_img_no = min(img_num, beg_img_no + batch_num)
  270. norm_img_batch = []
  271. imgC, imgH, imgW = self.rec_image_shape[:3]
  272. max_wh_ratio = imgW / imgH
  273. # max_wh_ratio = 0
  274. for ino in range(beg_img_no, end_img_no):
  275. h, w = img_list[indices[ino]].shape[0:2]
  276. wh_ratio = w * 1.0 / h
  277. max_wh_ratio = max(max_wh_ratio, wh_ratio)
  278. for ino in range(beg_img_no, end_img_no):
  279. norm_img = self.resize_norm_img(img_list[indices[ino]],
  280. max_wh_ratio)
  281. norm_img = norm_img[np.newaxis, :]
  282. norm_img_batch.append(norm_img)
  283. norm_img_batch = np.concatenate(norm_img_batch)
  284. norm_img_batch = norm_img_batch.copy()
  285. input_dict = {}
  286. input_dict[self.input_tensor.name] = norm_img_batch
  287. for i in range(100000):
  288. try:
  289. outputs = self.predictor.run(None, input_dict)
  290. break
  291. except Exception as e:
  292. if i >= 3:
  293. raise e
  294. time.sleep(5)
  295. preds = outputs[0]
  296. rec_result = self.postprocess_op(preds)
  297. for rno in range(len(rec_result)):
  298. rec_res[indices[beg_img_no + rno]] = rec_result[rno]
  299. return rec_res, time.time() - st
  300. class TextDetector(object):
  301. def __init__(self, model_dir):
  302. pre_process_list = [{
  303. 'DetResizeForTest': {
  304. 'limit_side_len': 960,
  305. 'limit_type': "max",
  306. }
  307. }, {
  308. 'NormalizeImage': {
  309. 'std': [0.229, 0.224, 0.225],
  310. 'mean': [0.485, 0.456, 0.406],
  311. 'scale': '1./255.',
  312. 'order': 'hwc'
  313. }
  314. }, {
  315. 'ToCHWImage': None
  316. }, {
  317. 'KeepKeys': {
  318. 'keep_keys': ['image', 'shape']
  319. }
  320. }]
  321. postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000,
  322. "unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
  323. self.postprocess_op = build_post_process(postprocess_params)
  324. self.predictor, self.input_tensor = load_model(model_dir, 'det')
  325. img_h, img_w = self.input_tensor.shape[2:]
  326. if isinstance(img_h, str) or isinstance(img_w, str):
  327. pass
  328. elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
  329. pre_process_list[0] = {
  330. 'DetResizeForTest': {
  331. 'image_shape': [img_h, img_w]
  332. }
  333. }
  334. self.preprocess_op = create_operators(pre_process_list)
  335. def order_points_clockwise(self, pts):
  336. rect = np.zeros((4, 2), dtype="float32")
  337. s = pts.sum(axis=1)
  338. rect[0] = pts[np.argmin(s)]
  339. rect[2] = pts[np.argmax(s)]
  340. tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
  341. diff = np.diff(np.array(tmp), axis=1)
  342. rect[1] = tmp[np.argmin(diff)]
  343. rect[3] = tmp[np.argmax(diff)]
  344. return rect
  345. def clip_det_res(self, points, img_height, img_width):
  346. for pno in range(points.shape[0]):
  347. points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
  348. points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
  349. return points
  350. def filter_tag_det_res(self, dt_boxes, image_shape):
  351. img_height, img_width = image_shape[0:2]
  352. dt_boxes_new = []
  353. for box in dt_boxes:
  354. if isinstance(box, list):
  355. box = np.array(box)
  356. box = self.order_points_clockwise(box)
  357. box = self.clip_det_res(box, img_height, img_width)
  358. rect_width = int(np.linalg.norm(box[0] - box[1]))
  359. rect_height = int(np.linalg.norm(box[0] - box[3]))
  360. if rect_width <= 3 or rect_height <= 3:
  361. continue
  362. dt_boxes_new.append(box)
  363. dt_boxes = np.array(dt_boxes_new)
  364. return dt_boxes
  365. def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
  366. img_height, img_width = image_shape[0:2]
  367. dt_boxes_new = []
  368. for box in dt_boxes:
  369. if isinstance(box, list):
  370. box = np.array(box)
  371. box = self.clip_det_res(box, img_height, img_width)
  372. dt_boxes_new.append(box)
  373. dt_boxes = np.array(dt_boxes_new)
  374. return dt_boxes
  375. def __call__(self, img):
  376. ori_im = img.copy()
  377. data = {'image': img}
  378. st = time.time()
  379. data = transform(data, self.preprocess_op)
  380. img, shape_list = data
  381. if img is None:
  382. return None, 0
  383. img = np.expand_dims(img, axis=0)
  384. shape_list = np.expand_dims(shape_list, axis=0)
  385. img = img.copy()
  386. input_dict = {}
  387. input_dict[self.input_tensor.name] = img
  388. for i in range(100000):
  389. try:
  390. outputs = self.predictor.run(None, input_dict)
  391. break
  392. except Exception as e:
  393. if i >= 3:
  394. raise e
  395. time.sleep(5)
  396. post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
  397. dt_boxes = post_result[0]['points']
  398. dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
  399. return dt_boxes, time.time() - st
  400. class OCR(object):
  401. def __init__(self, model_dir=None):
  402. """
  403. If you have trouble downloading HuggingFace models, -_^ this might help!!
  404. For Linux:
  405. export HF_ENDPOINT=https://hf-mirror.com
  406. For Windows:
  407. Good luck
  408. ^_-
  409. """
  410. if not model_dir:
  411. try:
  412. model_dir = os.path.join(
  413. get_project_base_directory(),
  414. "rag/res/deepdoc")
  415. self.text_detector = TextDetector(model_dir)
  416. self.text_recognizer = TextRecognizer(model_dir)
  417. except Exception:
  418. model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
  419. local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
  420. local_dir_use_symlinks=False)
  421. self.text_detector = TextDetector(model_dir)
  422. self.text_recognizer = TextRecognizer(model_dir)
  423. self.drop_score = 0.5
  424. self.crop_image_res_index = 0
  425. def get_rotate_crop_image(self, img, points):
  426. '''
  427. img_height, img_width = img.shape[0:2]
  428. left = int(np.min(points[:, 0]))
  429. right = int(np.max(points[:, 0]))
  430. top = int(np.min(points[:, 1]))
  431. bottom = int(np.max(points[:, 1]))
  432. img_crop = img[top:bottom, left:right, :].copy()
  433. points[:, 0] = points[:, 0] - left
  434. points[:, 1] = points[:, 1] - top
  435. '''
  436. assert len(points) == 4, "shape of points must be 4*2"
  437. img_crop_width = int(
  438. max(
  439. np.linalg.norm(points[0] - points[1]),
  440. np.linalg.norm(points[2] - points[3])))
  441. img_crop_height = int(
  442. max(
  443. np.linalg.norm(points[0] - points[3]),
  444. np.linalg.norm(points[1] - points[2])))
  445. pts_std = np.float32([[0, 0], [img_crop_width, 0],
  446. [img_crop_width, img_crop_height],
  447. [0, img_crop_height]])
  448. M = cv2.getPerspectiveTransform(points, pts_std)
  449. dst_img = cv2.warpPerspective(
  450. img,
  451. M, (img_crop_width, img_crop_height),
  452. borderMode=cv2.BORDER_REPLICATE,
  453. flags=cv2.INTER_CUBIC)
  454. dst_img_height, dst_img_width = dst_img.shape[0:2]
  455. if dst_img_height * 1.0 / dst_img_width >= 1.5:
  456. dst_img = np.rot90(dst_img)
  457. return dst_img
  458. def sorted_boxes(self, dt_boxes):
  459. """
  460. Sort text boxes in order from top to bottom, left to right
  461. args:
  462. dt_boxes(array):detected text boxes with shape [4, 2]
  463. return:
  464. sorted boxes(array) with shape [4, 2]
  465. """
  466. num_boxes = dt_boxes.shape[0]
  467. sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
  468. _boxes = list(sorted_boxes)
  469. for i in range(num_boxes - 1):
  470. for j in range(i, -1, -1):
  471. if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
  472. (_boxes[j + 1][0][0] < _boxes[j][0][0]):
  473. tmp = _boxes[j]
  474. _boxes[j] = _boxes[j + 1]
  475. _boxes[j + 1] = tmp
  476. else:
  477. break
  478. return _boxes
  479. def detect(self, img):
  480. time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
  481. if img is None:
  482. return None, None, time_dict
  483. start = time.time()
  484. dt_boxes, elapse = self.text_detector(img)
  485. time_dict['det'] = elapse
  486. if dt_boxes is None:
  487. end = time.time()
  488. time_dict['all'] = end - start
  489. return None, None, time_dict
  490. return zip(self.sorted_boxes(dt_boxes), [
  491. ("", 0) for _ in range(len(dt_boxes))])
  492. def recognize(self, ori_im, box):
  493. img_crop = self.get_rotate_crop_image(ori_im, box)
  494. rec_res, elapse = self.text_recognizer([img_crop])
  495. text, score = rec_res[0]
  496. if score < self.drop_score:
  497. return ""
  498. return text
  499. def __call__(self, img, cls=True):
  500. time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
  501. if img is None:
  502. return None, None, time_dict
  503. start = time.time()
  504. ori_im = img.copy()
  505. dt_boxes, elapse = self.text_detector(img)
  506. time_dict['det'] = elapse
  507. if dt_boxes is None:
  508. end = time.time()
  509. time_dict['all'] = end - start
  510. return None, None, time_dict
  511. img_crop_list = []
  512. dt_boxes = self.sorted_boxes(dt_boxes)
  513. for bno in range(len(dt_boxes)):
  514. tmp_box = copy.deepcopy(dt_boxes[bno])
  515. img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
  516. img_crop_list.append(img_crop)
  517. rec_res, elapse = self.text_recognizer(img_crop_list)
  518. time_dict['rec'] = elapse
  519. filter_boxes, filter_rec_res = [], []
  520. for box, rec_result in zip(dt_boxes, rec_res):
  521. text, score = rec_result
  522. if score >= self.drop_score:
  523. filter_boxes.append(box)
  524. filter_rec_res.append(rec_result)
  525. end = time.time()
  526. time_dict['all'] = end - start
  527. # for bno in range(len(img_crop_list)):
  528. # print(f"{bno}, {rec_res[bno]}")
  529. return list(zip([a.tolist() for a in filter_boxes], filter_rec_res))