Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import os
  17. from datetime import date
  18. from enum import IntEnum, Enum
  19. import rag.utils.es_conn
  20. import rag.utils.infinity_conn
  21. import rag.utils
  22. from rag.nlp import search
  23. from graphrag import search as kg_search
  24. from api.utils import get_base_config, decrypt_database_config
  25. from api.constants import RAG_FLOW_SERVICE_NAME
  26. LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
  27. LLM = None
  28. LLM_FACTORY = None
  29. LLM_BASE_URL = None
  30. CHAT_MDL = ""
  31. EMBEDDING_MDL = ""
  32. RERANK_MDL = ""
  33. ASR_MDL = ""
  34. IMAGE2TEXT_MDL = ""
  35. API_KEY = None
  36. PARSERS = None
  37. HOST_IP = None
  38. HOST_PORT = None
  39. SECRET_KEY = None
  40. DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
  41. DATABASE = decrypt_database_config(name=DATABASE_TYPE)
  42. # authentication
  43. AUTHENTICATION_CONF = None
  44. # client
  45. CLIENT_AUTHENTICATION = None
  46. HTTP_APP_KEY = None
  47. GITHUB_OAUTH = None
  48. FEISHU_OAUTH = None
  49. DOC_ENGINE = None
  50. docStoreConn = None
  51. retrievaler = None
  52. kg_retrievaler = None
  53. def init_settings():
  54. global LLM, LLM_FACTORY, LLM_BASE_URL, LIGHTEN, DATABASE_TYPE, DATABASE
  55. LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
  56. DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
  57. DATABASE = decrypt_database_config(name=DATABASE_TYPE)
  58. LLM = get_base_config("user_default_llm", {})
  59. LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
  60. LLM_BASE_URL = LLM.get("base_url")
  61. global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
  62. if not LIGHTEN:
  63. default_llm = {
  64. "Tongyi-Qianwen": {
  65. "chat_model": "qwen-plus",
  66. "embedding_model": "text-embedding-v2",
  67. "image2text_model": "qwen-vl-max",
  68. "asr_model": "paraformer-realtime-8k-v1",
  69. },
  70. "OpenAI": {
  71. "chat_model": "gpt-3.5-turbo",
  72. "embedding_model": "text-embedding-ada-002",
  73. "image2text_model": "gpt-4-vision-preview",
  74. "asr_model": "whisper-1",
  75. },
  76. "Azure-OpenAI": {
  77. "chat_model": "gpt-35-turbo",
  78. "embedding_model": "text-embedding-ada-002",
  79. "image2text_model": "gpt-4-vision-preview",
  80. "asr_model": "whisper-1",
  81. },
  82. "ZHIPU-AI": {
  83. "chat_model": "glm-3-turbo",
  84. "embedding_model": "embedding-2",
  85. "image2text_model": "glm-4v",
  86. "asr_model": "",
  87. },
  88. "Ollama": {
  89. "chat_model": "qwen-14B-chat",
  90. "embedding_model": "flag-embedding",
  91. "image2text_model": "",
  92. "asr_model": "",
  93. },
  94. "Moonshot": {
  95. "chat_model": "moonshot-v1-8k",
  96. "embedding_model": "",
  97. "image2text_model": "",
  98. "asr_model": "",
  99. },
  100. "DeepSeek": {
  101. "chat_model": "deepseek-chat",
  102. "embedding_model": "",
  103. "image2text_model": "",
  104. "asr_model": "",
  105. },
  106. "VolcEngine": {
  107. "chat_model": "",
  108. "embedding_model": "",
  109. "image2text_model": "",
  110. "asr_model": "",
  111. },
  112. "BAAI": {
  113. "chat_model": "",
  114. "embedding_model": "BAAI/bge-large-zh-v1.5",
  115. "image2text_model": "",
  116. "asr_model": "",
  117. "rerank_model": "BAAI/bge-reranker-v2-m3",
  118. }
  119. }
  120. if LLM_FACTORY:
  121. CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"] + f"@{LLM_FACTORY}"
  122. ASR_MDL = default_llm[LLM_FACTORY]["asr_model"] + f"@{LLM_FACTORY}"
  123. IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"] + f"@{LLM_FACTORY}"
  124. EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"] + "@BAAI"
  125. RERANK_MDL = default_llm["BAAI"]["rerank_model"] + "@BAAI"
  126. global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
  127. API_KEY = LLM.get("api_key", "")
  128. PARSERS = LLM.get(
  129. "parsers",
  130. "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email")
  131. HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
  132. HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")
  133. SECRET_KEY = get_base_config(
  134. RAG_FLOW_SERVICE_NAME,
  135. {}).get("secret_key", str(date.today()))
  136. global AUTHENTICATION_CONF, CLIENT_AUTHENTICATION, HTTP_APP_KEY, GITHUB_OAUTH, FEISHU_OAUTH
  137. # authentication
  138. AUTHENTICATION_CONF = get_base_config("authentication", {})
  139. # client
  140. CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get(
  141. "client", {}).get(
  142. "switch", False)
  143. HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key")
  144. GITHUB_OAUTH = get_base_config("oauth", {}).get("github")
  145. FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
  146. global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
  147. DOC_ENGINE = os.environ.get('DOC_ENGINE', "elasticsearch")
  148. lower_case_doc_engine = DOC_ENGINE.lower()
  149. if lower_case_doc_engine == "elasticsearch":
  150. docStoreConn = rag.utils.es_conn.ESConnection()
  151. elif lower_case_doc_engine == "infinity":
  152. docStoreConn = rag.utils.infinity_conn.InfinityConnection()
  153. else:
  154. raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
  155. retrievaler = search.Dealer(docStoreConn)
  156. kg_retrievaler = kg_search.KGSearch(docStoreConn)
  157. class CustomEnum(Enum):
  158. @classmethod
  159. def valid(cls, value):
  160. try:
  161. cls(value)
  162. return True
  163. except BaseException:
  164. return False
  165. @classmethod
  166. def values(cls):
  167. return [member.value for member in cls.__members__.values()]
  168. @classmethod
  169. def names(cls):
  170. return [member.name for member in cls.__members__.values()]
  171. class RetCode(IntEnum, CustomEnum):
  172. SUCCESS = 0
  173. NOT_EFFECTIVE = 10
  174. EXCEPTION_ERROR = 100
  175. ARGUMENT_ERROR = 101
  176. DATA_ERROR = 102
  177. OPERATING_ERROR = 103
  178. CONNECTION_ERROR = 105
  179. RUNNING = 106
  180. PERMISSION_ERROR = 108
  181. AUTHENTICATION_ERROR = 109
  182. UNAUTHORIZED = 401
  183. SERVER_ERROR = 500
  184. FORBIDDEN = 403
  185. NOT_FOUND = 404