You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import json
  18. from flask import request
  19. from flask_login import login_required, current_user
  20. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  21. from api import settings
  22. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  23. from api.db import StatusEnum, LLMType
  24. from api.db.db_models import TenantLLM
  25. from api.utils.api_utils import get_json_result
  26. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  27. import requests
  28. @manager.route('/factories', methods=['GET']) # noqa: F821
  29. @login_required
  30. def factories():
  31. try:
  32. fac = LLMFactoriesService.get_all()
  33. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  34. llms = LLMService.get_all()
  35. mdl_types = {}
  36. for m in llms:
  37. if m.status != StatusEnum.VALID.value:
  38. continue
  39. if m.fid not in mdl_types:
  40. mdl_types[m.fid] = set([])
  41. mdl_types[m.fid].add(m.model_type)
  42. for f in fac:
  43. f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
  44. LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
  45. return get_json_result(data=fac)
  46. except Exception as e:
  47. return server_error_response(e)
  48. @manager.route('/set_api_key', methods=['POST']) # noqa: F821
  49. @login_required
  50. @validate_request("llm_factory", "api_key")
  51. def set_api_key():
  52. req = request.json
  53. # test if api key works
  54. chat_passed, embd_passed, rerank_passed = False, False, False
  55. factory = req["llm_factory"]
  56. msg = ""
  57. for llm in LLMService.query(fid=factory):
  58. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  59. mdl = EmbeddingModel[factory](
  60. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  61. try:
  62. arr, tc = mdl.encode(["Test if the api key is available"])
  63. if len(arr[0]) == 0:
  64. raise Exception("Fail")
  65. embd_passed = True
  66. except Exception as e:
  67. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  68. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  69. mdl = ChatModel[factory](
  70. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  71. try:
  72. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  73. {"temperature": 0.9, 'max_tokens': 50})
  74. if m.find("**ERROR**") >= 0:
  75. raise Exception(m)
  76. chat_passed = True
  77. except Exception as e:
  78. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  79. e)
  80. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  81. mdl = RerankModel[factory](
  82. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  83. try:
  84. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  85. if len(arr) == 0 or tc == 0:
  86. raise Exception("Fail")
  87. rerank_passed = True
  88. logging.debug(f'passed model rerank {llm.llm_name}')
  89. except Exception as e:
  90. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  91. e)
  92. if any([embd_passed, chat_passed, rerank_passed]):
  93. msg = ''
  94. break
  95. if msg:
  96. return get_data_error_result(message=msg)
  97. llm_config = {
  98. "api_key": req["api_key"],
  99. "api_base": req.get("base_url", "")
  100. }
  101. for n in ["model_type", "llm_name"]:
  102. if n in req:
  103. llm_config[n] = req[n]
  104. for llm in LLMService.query(fid=factory):
  105. llm_config["max_tokens"]=llm.max_tokens
  106. if not TenantLLMService.filter_update(
  107. [TenantLLM.tenant_id == current_user.id,
  108. TenantLLM.llm_factory == factory,
  109. TenantLLM.llm_name == llm.llm_name],
  110. llm_config):
  111. TenantLLMService.save(
  112. tenant_id=current_user.id,
  113. llm_factory=factory,
  114. llm_name=llm.llm_name,
  115. model_type=llm.model_type,
  116. api_key=llm_config["api_key"],
  117. api_base=llm_config["api_base"],
  118. max_tokens=llm_config["max_tokens"]
  119. )
  120. return get_json_result(data=True)
  121. @manager.route('/add_llm', methods=['POST']) # noqa: F821
  122. @login_required
  123. @validate_request("llm_factory")
  124. def add_llm():
  125. req = request.json
  126. factory = req["llm_factory"]
  127. def apikey_json(keys):
  128. nonlocal req
  129. return json.dumps({k: req.get(k, "") for k in keys})
  130. if factory == "VolcEngine":
  131. # For VolcEngine, due to its special authentication method
  132. # Assemble ark_api_key endpoint_id into api_key
  133. llm_name = req["llm_name"]
  134. api_key = apikey_json(["ark_api_key", "endpoint_id"])
  135. elif factory == "Tencent Hunyuan":
  136. req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
  137. return set_api_key()
  138. elif factory == "Tencent Cloud":
  139. req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
  140. elif factory == "Bedrock":
  141. # For Bedrock, due to its special authentication method
  142. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  143. llm_name = req["llm_name"]
  144. api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
  145. elif factory == "LocalAI":
  146. llm_name = req["llm_name"] + "___LocalAI"
  147. api_key = "xxxxxxxxxxxxxxx"
  148. elif factory == "HuggingFace":
  149. llm_name = req["llm_name"] + "___HuggingFace"
  150. api_key = "xxxxxxxxxxxxxxx"
  151. elif factory == "OpenAI-API-Compatible":
  152. llm_name = req["llm_name"] + "___OpenAI-API"
  153. api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
  154. elif factory == "XunFei Spark":
  155. llm_name = req["llm_name"]
  156. if req["model_type"] == "chat":
  157. api_key = req.get("spark_api_password", "xxxxxxxxxxxxxxx")
  158. elif req["model_type"] == "tts":
  159. api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
  160. elif factory == "BaiduYiyan":
  161. llm_name = req["llm_name"]
  162. api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
  163. elif factory == "Fish Audio":
  164. llm_name = req["llm_name"]
  165. api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
  166. elif factory == "Google Cloud":
  167. llm_name = req["llm_name"]
  168. api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
  169. elif factory == "Azure-OpenAI":
  170. llm_name = req["llm_name"]
  171. api_key = apikey_json(["api_key", "api_version"])
  172. else:
  173. llm_name = req["llm_name"]
  174. api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
  175. llm = {
  176. "tenant_id": current_user.id,
  177. "llm_factory": factory,
  178. "model_type": req["model_type"],
  179. "llm_name": llm_name,
  180. "api_base": req.get("api_base", ""),
  181. "api_key": api_key,
  182. "max_tokens": req.get("max_tokens")
  183. }
  184. msg = ""
  185. if llm["model_type"] == LLMType.EMBEDDING.value:
  186. mdl = EmbeddingModel[factory](
  187. key=llm['api_key'],
  188. model_name=llm["llm_name"],
  189. base_url=llm["api_base"])
  190. try:
  191. arr, tc = mdl.encode(["Test if the api key is available"])
  192. if len(arr[0]) == 0:
  193. raise Exception("Fail")
  194. except Exception as e:
  195. msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
  196. elif llm["model_type"] == LLMType.CHAT.value:
  197. mdl = ChatModel[factory](
  198. key=llm['api_key'],
  199. model_name=llm["llm_name"],
  200. base_url=llm["api_base"]
  201. )
  202. try:
  203. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  204. "temperature": 0.9})
  205. if not tc:
  206. raise Exception(m)
  207. except Exception as e:
  208. msg += f"\nFail to access model({llm['llm_name']})." + str(
  209. e)
  210. elif llm["model_type"] == LLMType.RERANK:
  211. mdl = RerankModel[factory](
  212. key=llm["api_key"],
  213. model_name=llm["llm_name"],
  214. base_url=llm["api_base"]
  215. )
  216. try:
  217. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
  218. if len(arr) == 0:
  219. raise Exception("Not known.")
  220. except Exception as e:
  221. msg += f"\nFail to access model({llm['llm_name']})." + str(
  222. e)
  223. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  224. mdl = CvModel[factory](
  225. key=llm["api_key"],
  226. model_name=llm["llm_name"],
  227. base_url=llm["api_base"]
  228. )
  229. try:
  230. img_url = (
  231. "https://www.8848seo.cn/zb_users/upload/2022/07/20220705101240_99378.jpg"
  232. )
  233. res = requests.get(img_url)
  234. if res.status_code == 200:
  235. m, tc = mdl.describe(res.content)
  236. if not tc:
  237. raise Exception(m)
  238. else:
  239. pass
  240. except Exception as e:
  241. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  242. elif llm["model_type"] == LLMType.TTS:
  243. mdl = TTSModel[factory](
  244. key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
  245. )
  246. try:
  247. for resp in mdl.tts("Hello~ Ragflower!"):
  248. pass
  249. except RuntimeError as e:
  250. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  251. else:
  252. # TODO: check other type of models
  253. pass
  254. if msg:
  255. return get_data_error_result(message=msg)
  256. if not TenantLLMService.filter_update(
  257. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
  258. TenantLLM.llm_name == llm["llm_name"]], llm):
  259. TenantLLMService.save(**llm)
  260. return get_json_result(data=True)
  261. @manager.route('/delete_llm', methods=['POST']) # noqa: F821
  262. @login_required
  263. @validate_request("llm_factory", "llm_name")
  264. def delete_llm():
  265. req = request.json
  266. TenantLLMService.filter_delete(
  267. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"],
  268. TenantLLM.llm_name == req["llm_name"]])
  269. return get_json_result(data=True)
  270. @manager.route('/delete_factory', methods=['POST']) # noqa: F821
  271. @login_required
  272. @validate_request("llm_factory")
  273. def delete_factory():
  274. req = request.json
  275. TenantLLMService.filter_delete(
  276. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
  277. return get_json_result(data=True)
  278. @manager.route('/my_llms', methods=['GET']) # noqa: F821
  279. @login_required
  280. def my_llms():
  281. try:
  282. res = {}
  283. for o in TenantLLMService.get_my_llms(current_user.id):
  284. if o["llm_factory"] not in res:
  285. res[o["llm_factory"]] = {
  286. "tags": o["tags"],
  287. "llm": []
  288. }
  289. res[o["llm_factory"]]["llm"].append({
  290. "type": o["model_type"],
  291. "name": o["llm_name"],
  292. "used_token": o["used_tokens"]
  293. })
  294. return get_json_result(data=res)
  295. except Exception as e:
  296. return server_error_response(e)
  297. @manager.route('/list', methods=['GET']) # noqa: F821
  298. @login_required
  299. def list_app():
  300. self_deploied = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
  301. weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
  302. model_type = request.args.get("model_type")
  303. try:
  304. objs = TenantLLMService.query(tenant_id=current_user.id)
  305. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  306. llms = LLMService.get_all()
  307. llms = [m.to_dict()
  308. for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
  309. for m in llms:
  310. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
  311. llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
  312. for o in objs:
  313. if not o.api_key:
  314. continue
  315. if o.llm_name + "@" + o.llm_factory in llm_set:
  316. continue
  317. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  318. res = {}
  319. for m in llms:
  320. if model_type and m["model_type"].find(model_type) < 0:
  321. continue
  322. if m["fid"] not in res:
  323. res[m["fid"]] = []
  324. res[m["fid"]].append(m)
  325. return get_json_result(data=res)
  326. except Exception as e:
  327. return server_error_response(e)