You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. from functools import partial
  18. import pandas as pd
  19. from api.db import LLMType
  20. from api.db.services.conversation_service import structure_answer
  21. from api.db.services.dialog_service import message_fit_in
  22. from api.db.services.llm_service import LLMBundle
  23. from api import settings
  24. from agent.component.base import ComponentBase, ComponentParamBase
  25. class GenerateParam(ComponentParamBase):
  26. """
  27. Define the Generate component parameters.
  28. """
  29. def __init__(self):
  30. super().__init__()
  31. self.llm_id = ""
  32. self.prompt = ""
  33. self.max_tokens = 0
  34. self.temperature = 0
  35. self.top_p = 0
  36. self.presence_penalty = 0
  37. self.frequency_penalty = 0
  38. self.cite = True
  39. self.parameters = []
  40. def check(self):
  41. self.check_decimal_float(self.temperature, "[Generate] Temperature")
  42. self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
  43. self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
  44. self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
  45. self.check_decimal_float(self.top_p, "[Generate] Top P")
  46. self.check_empty(self.llm_id, "[Generate] LLM")
  47. # self.check_defined_type(self.parameters, "Parameters", ["list"])
  48. def gen_conf(self):
  49. conf = {}
  50. if self.max_tokens > 0:
  51. conf["max_tokens"] = self.max_tokens
  52. if self.temperature > 0:
  53. conf["temperature"] = self.temperature
  54. if self.top_p > 0:
  55. conf["top_p"] = self.top_p
  56. if self.presence_penalty > 0:
  57. conf["presence_penalty"] = self.presence_penalty
  58. if self.frequency_penalty > 0:
  59. conf["frequency_penalty"] = self.frequency_penalty
  60. return conf
  61. class Generate(ComponentBase):
  62. component_name = "Generate"
  63. def get_dependent_components(self):
  64. cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
  65. if para.get("component_id") \
  66. and para["component_id"].lower().find("answer") < 0 \
  67. and para["component_id"].lower().find("begin") < 0])
  68. return list(cpnts)
  69. def set_cite(self, retrieval_res, answer):
  70. retrieval_res = retrieval_res.dropna(subset=["vector", "content_ltks"]).reset_index(drop=True)
  71. if "empty_response" in retrieval_res.columns:
  72. retrieval_res["empty_response"].fillna("", inplace=True)
  73. answer, idx = settings.retrievaler.insert_citations(answer,
  74. [ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
  75. [ck["vector"] for _, ck in retrieval_res.iterrows()],
  76. LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
  77. self._canvas.get_embedding_model()), tkweight=0.7,
  78. vtweight=0.3)
  79. doc_ids = set([])
  80. recall_docs = []
  81. for i in idx:
  82. did = retrieval_res.loc[int(i), "doc_id"]
  83. if did in doc_ids:
  84. continue
  85. doc_ids.add(did)
  86. recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
  87. del retrieval_res["vector"]
  88. del retrieval_res["content_ltks"]
  89. reference = {
  90. "chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
  91. "doc_aggs": recall_docs
  92. }
  93. if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
  94. answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
  95. res = {"content": answer, "reference": reference}
  96. res = structure_answer(None, res, "", "")
  97. return res
  98. def get_input_elements(self):
  99. if self._param.parameters:
  100. return [{"key": "user", "name": "User"}, *self._param.parameters]
  101. return [{"key": "user", "name": "User"}]
  102. def _run(self, history, **kwargs):
  103. chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
  104. prompt = self._param.prompt
  105. retrieval_res = []
  106. self._param.inputs = []
  107. for para in self._param.parameters:
  108. if not para.get("component_id"):
  109. continue
  110. component_id = para["component_id"].split("@")[0]
  111. if para["component_id"].lower().find("@") >= 0:
  112. cpn_id, key = para["component_id"].split("@")
  113. for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
  114. if p["key"] == key:
  115. kwargs[para["key"]] = p.get("value", "")
  116. self._param.inputs.append(
  117. {"component_id": para["component_id"], "content": kwargs[para["key"]]})
  118. break
  119. else:
  120. assert False, f"Can't find parameter '{key}' for {cpn_id}"
  121. continue
  122. cpn = self._canvas.get_component(component_id)["obj"]
  123. if cpn.component_name.lower() == "answer":
  124. hist = self._canvas.get_history(1)
  125. if hist:
  126. hist = hist[0]["content"]
  127. else:
  128. hist = ""
  129. kwargs[para["key"]] = hist
  130. continue
  131. _, out = cpn.output(allow_partial=False)
  132. if "content" not in out.columns:
  133. kwargs[para["key"]] = ""
  134. else:
  135. if cpn.component_name.lower() == "retrieval":
  136. retrieval_res.append(out)
  137. kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
  138. self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
  139. if retrieval_res:
  140. retrieval_res = pd.concat(retrieval_res, ignore_index=True)
  141. else:
  142. retrieval_res = pd.DataFrame([])
  143. for n, v in kwargs.items():
  144. prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
  145. if not self._param.inputs and prompt.find("{input}") >= 0:
  146. retrieval_res = self.get_input()
  147. input = (" - " + "\n - ".join(
  148. [c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
  149. prompt = re.sub(r"\{input\}", re.escape(input), prompt)
  150. downstreams = self._canvas.get_component(self._id)["downstream"]
  151. if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
  152. "obj"].component_name.lower() == "answer":
  153. return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
  154. if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
  155. res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
  156. retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
  157. return pd.DataFrame([res])
  158. msg = self._canvas.get_history(self._param.message_history_window_size)
  159. if len(msg) < 1:
  160. msg.append({"role": "user", "content": ""})
  161. _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
  162. if len(msg) < 2:
  163. msg.append({"role": "user", "content": ""})
  164. ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
  165. if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
  166. res = self.set_cite(retrieval_res, ans)
  167. return pd.DataFrame([res])
  168. return Generate.be_output(ans)
  169. def stream_output(self, chat_mdl, prompt, retrieval_res):
  170. res = None
  171. if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
  172. res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
  173. retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
  174. yield res
  175. self.set_output(res)
  176. return
  177. msg = self._canvas.get_history(self._param.message_history_window_size)
  178. if len(msg) < 1:
  179. msg.append({"role": "user", "content": ""})
  180. _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
  181. if len(msg) < 2:
  182. msg.append({"role": "user", "content": ""})
  183. answer = ""
  184. for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
  185. res = {"content": ans, "reference": []}
  186. answer = ans
  187. yield res
  188. if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
  189. res = self.set_cite(retrieval_res, answer)
  190. yield res
  191. self.set_output(Generate.be_output(res))
  192. def debug(self, **kwargs):
  193. chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
  194. prompt = self._param.prompt
  195. for para in self._param.debug_inputs:
  196. kwargs[para["key"]] = para.get("value", "")
  197. for n, v in kwargs.items():
  198. prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
  199. ans = chat_mdl.chat(prompt, [{"role": "user", "content": kwargs.get("user", "")}], self._param.gen_conf())
  200. return pd.DataFrame([ans])