# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import os import time from abc import ABC import pandas as pd import pywencai from agent.tools.base import ToolParamBase, ToolMeta, ToolBase from api.utils.api_utils import timeout class WenCaiParam(ToolParamBase): """ Define the WenCai component parameters. """ def __init__(self): self.meta:ToolMeta = { "name": "iwencai", "description": """ iwencai search: search platform is committed to providing hundreds of millions of investors with the most timely, accurate and comprehensive information, covering news, announcements, research reports, blogs, forums, Weibo, characters, etc. robo-advisor intelligent stock selection platform: through AI technology, is committed to providing investors with intelligent stock selection, quantitative investment, main force tracking, value investment, technical analysis and other types of stock selection technologies. fund selection platform: through AI technology, is committed to providing excellent fund, value investment, quantitative analysis and other fund selection technologies for foundation citizens. """, "parameters": { "query": { "type": "string", "description": "The question/conditions to select stocks.", "default": "{sys.query}", "required": True } } } super().__init__() self.top_n = 10 self.query_type = "stock" def check(self): self.check_positive_integer(self.top_n, "Top N") self.check_valid_value(self.query_type, "Query type", ['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance', 'futures', 'lccp', 'foreign_exchange']) def get_input_form(self) -> dict[str, dict]: return { "query": { "name": "Query", "type": "line" } } class WenCai(ToolBase, ABC): component_name = "WenCai" @timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)) def _invoke(self, **kwargs): if not kwargs.get("query"): self.set_output("report", "") return "" last_e = "" for _ in range(self._param.max_retries+1): try: wencai_res = [] res = pywencai.get(query=kwargs["query"], query_type=self._param.query_type, perpage=self._param.top_n) if isinstance(res, pd.DataFrame): wencai_res.append(res.to_markdown()) elif isinstance(res, dict): for item in res.items(): if isinstance(item[1], list): wencai_res.append(item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()) elif isinstance(item[1], str): wencai_res.append(item[0] + "\n" + item[1]) elif isinstance(item[1], dict): if "meta" in item[1].keys(): continue wencai_res.append(pd.DataFrame.from_dict(item[1], orient='index').to_markdown()) elif isinstance(item[1], pd.DataFrame): if "image_url" in item[1].columns: continue wencai_res.append(item[1].to_markdown()) else: wencai_res.append(item[0] + "\n" + str(item[1])) self.set_output("report", "\n\n".join(wencai_res)) return self.output("report") except Exception as e: last_e = e logging.exception(f"WenCai error: {e}") time.sleep(self._param.delay_after_error) if last_e: self.set_output("_ERROR", str(last_e)) return f"WenCai error: {last_e}" assert False, self.output() def thoughts(self) -> str: return "Pulling live financial data for `{}`.".format(self.get_input().get("query", "-_-!"))