# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import asyncio import json import logging import os import random import re import time from abc import ABC from copy import deepcopy from typing import Any, Protocol from urllib.parse import urljoin import json_repair import litellm import openai import requests from ollama import Client from openai import OpenAI from openai.lib.azure import AzureOpenAI from strenum import StrEnum from zhipuai import ZhipuAI from rag.llm import FACTORY_DEFAULT_BASE_URL, LITELLM_PROVIDER_PREFIX, SupportedLiteLLMProvider from rag.nlp import is_chinese, is_english from rag.utils import num_tokens_from_string # Error message constants class LLMErrorCode(StrEnum): ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED" ERROR_AUTHENTICATION = "AUTH_ERROR" ERROR_INVALID_REQUEST = "INVALID_REQUEST" ERROR_SERVER = "SERVER_ERROR" ERROR_TIMEOUT = "TIMEOUT" ERROR_CONNECTION = "CONNECTION_ERROR" ERROR_MODEL = "MODEL_ERROR" ERROR_MAX_ROUNDS = "ERROR_MAX_ROUNDS" ERROR_CONTENT_FILTER = "CONTENT_FILTERED" ERROR_QUOTA = "QUOTA_EXCEEDED" ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED" ERROR_GENERIC = "GENERIC_ERROR" class ReActMode(StrEnum): FUNCTION_CALL = "function_call" REACT = "react" ERROR_PREFIX = "**ERROR**" LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。" LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length." class ToolCallSession(Protocol): def tool_call(self, name: str, arguments: dict[str, Any]) -> str: ... class Base(ABC): def __init__(self, key, model_name, base_url, **kwargs): timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600)) self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout) self.model_name = model_name # Configure retry parameters self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5))) self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0))) self.max_rounds = kwargs.get("max_rounds", 5) self.is_tools = False self.tools = [] self.toolcall_sessions = {} def _get_delay(self): """Calculate retry delay time""" return self.base_delay * random.uniform(10, 150) def _classify_error(self, error): """Classify error based on error message content""" error_str = str(error).lower() keywords_mapping = [ (["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA), (["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT), (["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION), (["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST), (["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER), (["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT), (["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION), (["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER), (["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL), (["max rounds"], LLMErrorCode.ERROR_MODEL), ] for words, code in keywords_mapping: if re.search("({})".format("|".join(words)), error_str): return code return LLMErrorCode.ERROR_GENERIC def _clean_conf(self, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] return gen_conf def _chat(self, history, gen_conf, **kwargs): logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2)) if self.model_name.lower().find("qwen3") >= 0: kwargs["extra_body"] = {"enable_thinking": False} response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs) if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]): return "", 0 ans = response.choices[0].message.content.strip() if response.choices[0].finish_reason == "length": ans = self._length_stop(ans) return ans, self.total_token_count(response) def _chat_streamly(self, history, gen_conf, **kwargs): logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4)) reasoning_start = False response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf, stop=kwargs.get("stop")) for resp in response: if not resp.choices: continue if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" if kwargs.get("with_reasoning", True) and hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content: ans = "" if not reasoning_start: reasoning_start = True ans = "" ans += resp.choices[0].delta.reasoning_content + "" else: reasoning_start = False ans = resp.choices[0].delta.content tol = self.total_token_count(resp) if not tol: tol = num_tokens_from_string(resp.choices[0].delta.content) if resp.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans, tol def _length_stop(self, ans): if is_chinese([ans]): return ans + LENGTH_NOTIFICATION_CN return ans + LENGTH_NOTIFICATION_EN def _exceptions(self, e, attempt): logging.exception("OpenAI chat_with_tools") # Classify the error error_code = self._classify_error(e) if attempt == self.max_retries: error_code = LLMErrorCode.ERROR_MAX_RETRIES # Check if it's a rate limit error or server error and not the last attempt should_retry = error_code == LLMErrorCode.ERROR_RATE_LIMIT or error_code == LLMErrorCode.ERROR_SERVER if not should_retry: return f"{ERROR_PREFIX}: {error_code} - {str(e)}" delay = self._get_delay() logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})") time.sleep(delay) def _verbose_tool_use(self, name, args, res): return "" + json.dumps({"name": name, "args": args, "result": res}, ensure_ascii=False, indent=2) + "" def _append_history(self, hist, tool_call, tool_res): hist.append( { "role": "assistant", "tool_calls": [ { "index": tool_call.index, "id": tool_call.id, "function": { "name": tool_call.function.name, "arguments": tool_call.function.arguments, }, "type": "function", }, ], } ) try: if isinstance(tool_res, dict): tool_res = json.dumps(tool_res, ensure_ascii=False) finally: hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)}) return hist def bind_tools(self, toolcall_session, tools): if not (toolcall_session and tools): return self.is_tools = True self.toolcall_session = toolcall_session self.tools = tools def chat_with_tools(self, system: str, history: list, gen_conf: dict = {}): gen_conf = self._clean_conf(gen_conf) if system: history.insert(0, {"role": "system", "content": system}) ans = "" tk_count = 0 hist = deepcopy(history) # Implement exponential backoff retry strategy for attempt in range(self.max_retries + 1): history = hist try: for _ in range(self.max_rounds + 1): logging.info(f"{self.tools=}") response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=self.tools, tool_choice="auto", **gen_conf) tk_count += self.total_token_count(response) if any([not response.choices, not response.choices[0].message]): raise Exception(f"500 response structure error. Response: {response}") if not hasattr(response.choices[0].message, "tool_calls") or not response.choices[0].message.tool_calls: if hasattr(response.choices[0].message, "reasoning_content") and response.choices[0].message.reasoning_content: ans += "" + response.choices[0].message.reasoning_content + "" ans += response.choices[0].message.content if response.choices[0].finish_reason == "length": ans = self._length_stop(ans) return ans, tk_count for tool_call in response.choices[0].message.tool_calls: logging.info(f"Response {tool_call=}") name = tool_call.function.name try: args = json_repair.loads(tool_call.function.arguments) tool_response = self.toolcall_session.tool_call(name, args) history = self._append_history(history, tool_call, tool_response) ans += self._verbose_tool_use(name, args, tool_response) except Exception as e: logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}") history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)}) ans += self._verbose_tool_use(name, {}, str(e)) logging.warning(f"Exceed max rounds: {self.max_rounds}") history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"}) response, token_count = self._chat(history, gen_conf) ans += response tk_count += token_count return ans, tk_count except Exception as e: e = self._exceptions(e, attempt) if e: return e, tk_count assert False, "Shouldn't be here." def chat(self, system, history, gen_conf={}, **kwargs): if system: history.insert(0, {"role": "system", "content": system}) gen_conf = self._clean_conf(gen_conf) # Implement exponential backoff retry strategy for attempt in range(self.max_retries + 1): try: return self._chat(history, gen_conf, **kwargs) except Exception as e: e = self._exceptions(e, attempt) if e: return e, 0 assert False, "Shouldn't be here." def _wrap_toolcall_message(self, stream): final_tool_calls = {} for chunk in stream: for tool_call in chunk.choices[0].delta.tool_calls or []: index = tool_call.index if index not in final_tool_calls: final_tool_calls[index] = tool_call final_tool_calls[index].function.arguments += tool_call.function.arguments return final_tool_calls def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict = {}): gen_conf = self._clean_conf(gen_conf) tools = self.tools if system: history.insert(0, {"role": "system", "content": system}) total_tokens = 0 hist = deepcopy(history) # Implement exponential backoff retry strategy for attempt in range(self.max_retries + 1): history = hist try: for _ in range(self.max_rounds + 1): reasoning_start = False logging.info(f"{tools=}") response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, tool_choice="auto", **gen_conf) final_tool_calls = {} answer = "" for resp in response: if resp.choices[0].delta.tool_calls: for tool_call in resp.choices[0].delta.tool_calls or []: index = tool_call.index if index not in final_tool_calls: if not tool_call.function.arguments: tool_call.function.arguments = "" final_tool_calls[index] = tool_call else: final_tool_calls[index].function.arguments += tool_call.function.arguments if tool_call.function.arguments else "" continue if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]): raise Exception("500 response structure error.") if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content: ans = "" if not reasoning_start: reasoning_start = True ans = "" ans += resp.choices[0].delta.reasoning_content + "" yield ans else: reasoning_start = False answer += resp.choices[0].delta.content yield resp.choices[0].delta.content tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(resp.choices[0].delta.content) else: total_tokens += tol finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else "" if finish_reason == "length": yield self._length_stop("") if answer: yield total_tokens return for tool_call in final_tool_calls.values(): name = tool_call.function.name try: args = json_repair.loads(tool_call.function.arguments) yield self._verbose_tool_use(name, args, "Begin to call...") tool_response = self.toolcall_session.tool_call(name, args) history = self._append_history(history, tool_call, tool_response) yield self._verbose_tool_use(name, args, tool_response) except Exception as e: logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}") history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)}) yield self._verbose_tool_use(name, {}, str(e)) logging.warning(f"Exceed max rounds: {self.max_rounds}") history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"}) response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf) for resp in response: if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]): raise Exception("500 response structure error.") if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" continue tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(resp.choices[0].delta.content) else: total_tokens += tol answer += resp.choices[0].delta.content yield resp.choices[0].delta.content yield total_tokens return except Exception as e: e = self._exceptions(e, attempt) if e: yield e yield total_tokens return assert False, "Shouldn't be here." def chat_streamly(self, system, history, gen_conf: dict = {}, **kwargs): if system: history.insert(0, {"role": "system", "content": system}) gen_conf = self._clean_conf(gen_conf) ans = "" total_tokens = 0 try: for delta_ans, tol in self._chat_streamly(history, gen_conf, **kwargs): yield delta_ans total_tokens += tol except openai.APIError as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens def total_token_count(self, resp): try: return resp.usage.total_tokens except Exception: pass try: return resp["usage"]["total_tokens"] except Exception: pass return 0 def _calculate_dynamic_ctx(self, history): """Calculate dynamic context window size""" def count_tokens(text): """Calculate token count for text""" # Simple calculation: 1 token per ASCII character # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.) total = 0 for char in text: if ord(char) < 128: # ASCII characters total += 1 else: # Non-ASCII characters (Chinese, Japanese, Korean, etc.) total += 2 return total # Calculate total tokens for all messages total_tokens = 0 for message in history: content = message.get("content", "") # Calculate content tokens content_tokens = count_tokens(content) # Add role marker token overhead role_tokens = 4 total_tokens += content_tokens + role_tokens # Apply 1.2x buffer ratio total_tokens_with_buffer = int(total_tokens * 1.2) if total_tokens_with_buffer <= 8192: ctx_size = 8192 else: ctx_multiplier = (total_tokens_with_buffer // 8192) + 1 ctx_size = ctx_multiplier * 8192 return ctx_size class GptTurbo(Base): _FACTORY_NAME = "OpenAI" def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1", **kwargs): if not base_url: base_url = "https://api.openai.com/v1" super().__init__(key, model_name, base_url, **kwargs) class XinferenceChat(Base): _FACTORY_NAME = "Xinference" def __init__(self, key=None, model_name="", base_url="", **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name, base_url, **kwargs) class HuggingFaceChat(Base): _FACTORY_NAME = "HuggingFace" def __init__(self, key=None, model_name="", base_url="", **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name.split("___")[0], base_url, **kwargs) class ModelScopeChat(Base): _FACTORY_NAME = "ModelScope" def __init__(self, key=None, model_name="", base_url="", **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name.split("___")[0], base_url, **kwargs) class AzureChat(Base): _FACTORY_NAME = "Azure-OpenAI" def __init__(self, key, model_name, base_url, **kwargs): api_key = json.loads(key).get("api_key", "") api_version = json.loads(key).get("api_version", "2024-02-01") super().__init__(key, model_name, base_url, **kwargs) self.client = AzureOpenAI(api_key=api_key, azure_endpoint=base_url, api_version=api_version) self.model_name = model_name class BaiChuanChat(Base): _FACTORY_NAME = "BaiChuan" def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1", **kwargs): if not base_url: base_url = "https://api.baichuan-ai.com/v1" super().__init__(key, model_name, base_url, **kwargs) @staticmethod def _format_params(params): return { "temperature": params.get("temperature", 0.3), "top_p": params.get("top_p", 0.85), } def _clean_conf(self, gen_conf): return { "temperature": gen_conf.get("temperature", 0.3), "top_p": gen_conf.get("top_p", 0.85), } def _chat(self, history, gen_conf={}, **kwargs): response = self.client.chat.completions.create( model=self.model_name, messages=history, extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]}, **gen_conf, ) ans = response.choices[0].message.content.strip() if response.choices[0].finish_reason == "length": if is_chinese([ans]): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, self.total_token_count(response) def chat_streamly(self, system, history, gen_conf={}, **kwargs): if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" total_tokens = 0 try: response = self.client.chat.completions.create( model=self.model_name, messages=history, extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]}, stream=True, **self._format_params(gen_conf), ) for resp in response: if not resp.choices: continue if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" ans = resp.choices[0].delta.content tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(resp.choices[0].delta.content) else: total_tokens = tol if resp.choices[0].finish_reason == "length": if is_chinese([ans]): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class ZhipuChat(Base): _FACTORY_NAME = "ZHIPU-AI" def __init__(self, key, model_name="glm-3-turbo", base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) self.client = ZhipuAI(api_key=key) self.model_name = model_name def _clean_conf(self, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] return gen_conf def chat_with_tools(self, system: str, history: list, gen_conf: dict): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] return super().chat_with_tools(system, history, gen_conf) def chat_streamly(self, system, history, gen_conf={}, **kwargs): if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] ans = "" tk_count = 0 try: logging.info(json.dumps(history, ensure_ascii=False, indent=2)) response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf) for resp in response: if not resp.choices[0].delta.content: continue delta = resp.choices[0].delta.content ans = delta if resp.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN tk_count = self.total_token_count(resp) if resp.choices[0].finish_reason == "stop": tk_count = self.total_token_count(resp) yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield tk_count def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] return super().chat_streamly_with_tools(system, history, gen_conf) class OllamaChat(Base): _FACTORY_NAME = "Ollama" def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) self.client = Client(host=base_url) if not key or key == "x" else Client(host=base_url, headers={"Authorization": f"Bearer {key}"}) self.model_name = model_name self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1))) def _clean_conf(self, gen_conf): options = {} if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] for k in ["temperature", "top_p", "presence_penalty", "frequency_penalty"]: if k not in gen_conf: continue options[k] = gen_conf[k] return options def _chat(self, history, gen_conf={}, **kwargs): # Calculate context size ctx_size = self._calculate_dynamic_ctx(history) gen_conf["num_ctx"] = ctx_size response = self.client.chat(model=self.model_name, messages=history, options=gen_conf, keep_alive=self.keep_alive) ans = response["message"]["content"].strip() token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0) return ans, token_count def chat_streamly(self, system, history, gen_conf={}, **kwargs): if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] try: # Calculate context size ctx_size = self._calculate_dynamic_ctx(history) options = {"num_ctx": ctx_size} if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] if "top_p" in gen_conf: options["top_p"] = gen_conf["top_p"] if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] ans = "" try: response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options, keep_alive=self.keep_alive) for resp in response: if resp["done"]: token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) yield token_count ans = resp["message"]["content"] yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield 0 except Exception as e: yield "**ERROR**: " + str(e) yield 0 class LocalAIChat(Base): _FACTORY_NAME = "LocalAI" def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") self.client = OpenAI(api_key="empty", base_url=base_url) self.model_name = model_name.split("___")[0] class LocalLLM(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from jina import Client self.client = Client(port=12345, protocol="grpc", asyncio=True) def _prepare_prompt(self, system, history, gen_conf): from rag.svr.jina_server import Prompt if system: history.insert(0, {"role": "system", "content": system}) return Prompt(message=history, gen_conf=gen_conf) def _stream_response(self, endpoint, prompt): from rag.svr.jina_server import Generation answer = "" try: res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation) loop = asyncio.get_event_loop() try: while True: answer = loop.run_until_complete(res.__anext__()).text yield answer except StopAsyncIteration: pass except Exception as e: yield answer + "\n**ERROR**: " + str(e) yield num_tokens_from_string(answer) def chat(self, system, history, gen_conf={}, **kwargs): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] prompt = self._prepare_prompt(system, history, gen_conf) chat_gen = self._stream_response("/chat", prompt) ans = next(chat_gen) total_tokens = next(chat_gen) return ans, total_tokens def chat_streamly(self, system, history, gen_conf={}, **kwargs): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] prompt = self._prepare_prompt(system, history, gen_conf) return self._stream_response("/stream", prompt) class VolcEngineChat(Base): _FACTORY_NAME = "VolcEngine" def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs): """ Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special, Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use model_name is for display only """ base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3" ark_api_key = json.loads(key).get("ark_api_key", "") model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "") super().__init__(ark_api_key, model_name, base_url, **kwargs) class MiniMaxChat(Base): _FACTORY_NAME = "MiniMax" def __init__(self, key, model_name, base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) if not base_url: base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2" self.base_url = base_url self.model_name = model_name self.api_key = key def _clean_conf(self, gen_conf): for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] return gen_conf def _chat(self, history, gen_conf): headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } payload = json.dumps({"model": self.model_name, "messages": history, **gen_conf}) response = requests.request("POST", url=self.base_url, headers=headers, data=payload) response = response.json() ans = response["choices"][0]["message"]["content"].strip() if response["choices"][0]["finish_reason"] == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, self.total_token_count(response) def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] ans = "" total_tokens = 0 try: headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } payload = json.dumps( { "model": self.model_name, "messages": history, "stream": True, **gen_conf, } ) response = requests.request( "POST", url=self.base_url, headers=headers, data=payload, ) for resp in response.text.split("\n\n")[:-1]: resp = json.loads(resp[6:]) text = "" if "choices" in resp and "delta" in resp["choices"][0]: text = resp["choices"][0]["delta"]["content"] ans = text tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(text) else: total_tokens = tol yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class MistralChat(Base): _FACTORY_NAME = "Mistral" def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from mistralai.client import MistralClient self.client = MistralClient(api_key=key) self.model_name = model_name def _clean_conf(self, gen_conf): for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] return gen_conf def _chat(self, history, gen_conf={}, **kwargs): response = self.client.chat(model=self.model_name, messages=history, **gen_conf) ans = response.choices[0].message.content if response.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, self.total_token_count(response) def chat_streamly(self, system, history, gen_conf={}, **kwargs): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] ans = "" total_tokens = 0 try: response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf, **kwargs) for resp in response: if not resp.choices or not resp.choices[0].delta.content: continue ans = resp.choices[0].delta.content total_tokens += 1 if resp.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans except openai.APIError as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens ## openrouter class OpenRouterChat(Base): _FACTORY_NAME = "OpenRouter" def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1", **kwargs): if not base_url: base_url = "https://openrouter.ai/api/v1" super().__init__(key, model_name, base_url, **kwargs) class StepFunChat(Base): _FACTORY_NAME = "StepFun" def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1", **kwargs): if not base_url: base_url = "https://api.stepfun.com/v1" super().__init__(key, model_name, base_url, **kwargs) class LmStudioChat(Base): _FACTORY_NAME = "LM-Studio" def __init__(self, key, model_name, base_url, **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name, base_url, **kwargs) self.client = OpenAI(api_key="lm-studio", base_url=base_url) self.model_name = model_name class OpenAI_APIChat(Base): _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"] def __init__(self, key, model_name, base_url, **kwargs): if not base_url: raise ValueError("url cannot be None") model_name = model_name.split("___")[0] super().__init__(key, model_name, base_url, **kwargs) class PPIOChat(Base): _FACTORY_NAME = "PPIO" def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai", **kwargs): if not base_url: base_url = "https://api.ppinfra.com/v3/openai" super().__init__(key, model_name, base_url, **kwargs) class LeptonAIChat(Base): _FACTORY_NAME = "LeptonAI" def __init__(self, key, model_name, base_url=None, **kwargs): if not base_url: base_url = urljoin("https://" + model_name + ".lepton.run", "api/v1") super().__init__(key, model_name, base_url, **kwargs) class PerfXCloudChat(Base): _FACTORY_NAME = "PerfXCloud" def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1", **kwargs): if not base_url: base_url = "https://cloud.perfxlab.cn/v1" super().__init__(key, model_name, base_url, **kwargs) class UpstageChat(Base): _FACTORY_NAME = "Upstage" def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar", **kwargs): if not base_url: base_url = "https://api.upstage.ai/v1/solar" super().__init__(key, model_name, base_url, **kwargs) class NovitaAIChat(Base): _FACTORY_NAME = "NovitaAI" def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai", **kwargs): if not base_url: base_url = "https://api.novita.ai/v3/openai" super().__init__(key, model_name, base_url, **kwargs) class SILICONFLOWChat(Base): _FACTORY_NAME = "SILICONFLOW" def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1", **kwargs): if not base_url: base_url = "https://api.siliconflow.cn/v1" super().__init__(key, model_name, base_url, **kwargs) class YiChat(Base): _FACTORY_NAME = "01.AI" def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1", **kwargs): if not base_url: base_url = "https://api.lingyiwanwu.com/v1" super().__init__(key, model_name, base_url, **kwargs) class GiteeChat(Base): _FACTORY_NAME = "GiteeAI" def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/", **kwargs): if not base_url: base_url = "https://ai.gitee.com/v1/" super().__init__(key, model_name, base_url, **kwargs) class ReplicateChat(Base): _FACTORY_NAME = "Replicate" def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from replicate.client import Client self.model_name = model_name self.client = Client(api_token=key) def _chat(self, history, gen_conf={}, **kwargs): system = history[0]["content"] if history and history[0]["role"] == "system" else "" prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:] if item["role"] != "system"]) response = self.client.run( self.model_name, input={"system_prompt": system, "prompt": prompt, **gen_conf}, ) ans = "".join(response) return ans, num_tokens_from_string(ans) def chat_streamly(self, system, history, gen_conf={}, **kwargs): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]]) ans = "" try: response = self.client.run( self.model_name, input={"system_prompt": system, "prompt": prompt, **gen_conf}, ) for resp in response: ans = resp yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield num_tokens_from_string(ans) class HunyuanChat(Base): _FACTORY_NAME = "Tencent Hunyuan" def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from tencentcloud.common import credential from tencentcloud.hunyuan.v20230901 import hunyuan_client key = json.loads(key) sid = key.get("hunyuan_sid", "") sk = key.get("hunyuan_sk", "") cred = credential.Credential(sid, sk) self.model_name = model_name self.client = hunyuan_client.HunyuanClient(cred, "") def _clean_conf(self, gen_conf): _gen_conf = {} if "temperature" in gen_conf: _gen_conf["Temperature"] = gen_conf["temperature"] if "top_p" in gen_conf: _gen_conf["TopP"] = gen_conf["top_p"] return _gen_conf def _chat(self, history, gen_conf={}, **kwargs): from tencentcloud.hunyuan.v20230901 import models hist = [{k.capitalize(): v for k, v in item.items()} for item in history] req = models.ChatCompletionsRequest() params = {"Model": self.model_name, "Messages": hist, **gen_conf} req.from_json_string(json.dumps(params)) response = self.client.ChatCompletions(req) ans = response.Choices[0].Message.Content return ans, response.Usage.TotalTokens def chat_streamly(self, system, history, gen_conf={}, **kwargs): from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( TencentCloudSDKException, ) from tencentcloud.hunyuan.v20230901 import models _gen_conf = {} _history = [{k.capitalize(): v for k, v in item.items()} for item in history] if system: _history.insert(0, {"Role": "system", "Content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if "temperature" in gen_conf: _gen_conf["Temperature"] = gen_conf["temperature"] if "top_p" in gen_conf: _gen_conf["TopP"] = gen_conf["top_p"] req = models.ChatCompletionsRequest() params = { "Model": self.model_name, "Messages": _history, "Stream": True, **_gen_conf, } req.from_json_string(json.dumps(params)) ans = "" total_tokens = 0 try: response = self.client.ChatCompletions(req) for resp in response: resp = json.loads(resp["data"]) if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]: continue ans = resp["Choices"][0]["Delta"]["Content"] total_tokens += 1 yield ans except TencentCloudSDKException as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class SparkChat(Base): _FACTORY_NAME = "XunFei Spark" def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1", **kwargs): if not base_url: base_url = "https://spark-api-open.xf-yun.com/v1" model2version = { "Spark-Max": "generalv3.5", "Spark-Lite": "general", "Spark-Pro": "generalv3", "Spark-Pro-128K": "pro-128k", "Spark-4.0-Ultra": "4.0Ultra", } version2model = {v: k for k, v in model2version.items()} assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}" if model_name in model2version: model_version = model2version[model_name] else: model_version = model_name super().__init__(key, model_version, base_url, **kwargs) class BaiduYiyanChat(Base): _FACTORY_NAME = "BaiduYiyan" def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) import qianfan key = json.loads(key) ak = key.get("yiyan_ak", "") sk = key.get("yiyan_sk", "") self.client = qianfan.ChatCompletion(ak=ak, sk=sk) self.model_name = model_name.lower() def _clean_conf(self, gen_conf): gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1 if "max_tokens" in gen_conf: del gen_conf["max_tokens"] return gen_conf def _chat(self, history, gen_conf): system = history[0]["content"] if history and history[0]["role"] == "system" else "" response = self.client.do(model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, **gen_conf).body ans = response["result"] return ans, self.total_token_count(response) def chat_streamly(self, system, history, gen_conf={}, **kwargs): gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1 if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" total_tokens = 0 try: response = self.client.do(model=self.model_name, messages=history, system=system, stream=True, **gen_conf) for resp in response: resp = resp.body ans = resp["result"] total_tokens = self.total_token_count(resp) yield ans except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 yield total_tokens class GoogleChat(Base): _FACTORY_NAME = "Google Cloud" def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) import base64 from google.oauth2 import service_account key = json.loads(key) access_token = json.loads(base64.b64decode(key.get("google_service_account_key", ""))) project_id = key.get("google_project_id", "") region = key.get("google_region", "") scopes = ["https://www.googleapis.com/auth/cloud-platform"] self.model_name = model_name if "claude" in self.model_name: from anthropic import AnthropicVertex from google.auth.transport.requests import Request if access_token: credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes) request = Request() credits.refresh(request) token = credits.token self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token) else: self.client = AnthropicVertex(region=region, project_id=project_id) else: import vertexai.generative_models as glm from google.cloud import aiplatform if access_token: credits = service_account.Credentials.from_service_account_info(access_token) aiplatform.init(credentials=credits, project=project_id, location=region) else: aiplatform.init(project=project_id, location=region) self.client = glm.GenerativeModel(model_name=self.model_name) def _clean_conf(self, gen_conf): if "claude" in self.model_name: if "max_tokens" in gen_conf: del gen_conf["max_tokens"] else: if "max_tokens" in gen_conf: gen_conf["max_output_tokens"] = gen_conf["max_tokens"] for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_output_tokens"]: del gen_conf[k] return gen_conf def _chat(self, history, gen_conf={}, **kwargs): system = history[0]["content"] if history and history[0]["role"] == "system" else "" if "claude" in self.model_name: response = self.client.messages.create( model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, stream=False, **gen_conf, ).json() ans = response["content"][0]["text"] if response["stop_reason"] == "max_tokens": ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ( ans, response["usage"]["input_tokens"] + response["usage"]["output_tokens"], ) self.client._system_instruction = system hist = [] for item in history: if item["role"] == "system": continue hist.append(deepcopy(item)) item = hist[-1] if "role" in item and item["role"] == "assistant": item["role"] = "model" if "content" in item: item["parts"] = [ { "text": item.pop("content"), } ] response = self.client.generate_content(hist, generation_config=gen_conf) ans = response.text return ans, response.usage_metadata.total_token_count def chat_streamly(self, system, history, gen_conf={}, **kwargs): if "claude" in self.model_name: if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" total_tokens = 0 try: response = self.client.messages.create( model=self.model_name, messages=history, system=system, stream=True, **gen_conf, ) for res in response.iter_lines(): res = res.decode("utf-8") if "content_block_delta" in res and "data" in res: text = json.loads(res[6:])["delta"]["text"] ans = text total_tokens += num_tokens_from_string(text) except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens else: self.client._system_instruction = system if "max_tokens" in gen_conf: gen_conf["max_output_tokens"] = gen_conf["max_tokens"] for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_output_tokens"]: del gen_conf[k] for item in history: if "role" in item and item["role"] == "assistant": item["role"] = "model" if "content" in item: item["parts"] = item.pop("content") ans = "" try: response = self.model.generate_content(history, generation_config=gen_conf, stream=True) for resp in response: ans = resp.text yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield response._chunks[-1].usage_metadata.total_token_count class GPUStackChat(Base): _FACTORY_NAME = "GPUStack" def __init__(self, key=None, model_name="", base_url="", **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name, base_url, **kwargs) class Ai302Chat(Base): _FACTORY_NAME = "302.AI" def __init__(self, key, model_name, base_url="https://api.302.ai/v1", **kwargs): if not base_url: base_url = "https://api.302.ai/v1" super().__init__(key, model_name, base_url, **kwargs) class LiteLLMBase(ABC): _FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic"] def __init__(self, key, model_name, base_url=None, **kwargs): self.timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600)) self.provider = kwargs.get("provider", "") self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "") self.model_name = f"{self.prefix}{model_name}" self.api_key = key self.base_url = base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "") # Configure retry parameters self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5))) self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0))) self.max_rounds = kwargs.get("max_rounds", 5) self.is_tools = False self.tools = [] self.toolcall_sessions = {} # Factory specific fields if self.provider == SupportedLiteLLMProvider.Bedrock: self.bedrock_ak = json.loads(key).get("bedrock_ak", "") self.bedrock_sk = json.loads(key).get("bedrock_sk", "") self.bedrock_region = json.loads(key).get("bedrock_region", "") def _get_delay(self): """Calculate retry delay time""" return self.base_delay * random.uniform(10, 150) def _classify_error(self, error): """Classify error based on error message content""" error_str = str(error).lower() keywords_mapping = [ (["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA), (["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT), (["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION), (["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST), (["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER), (["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT), (["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION), (["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER), (["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL), (["max rounds"], LLMErrorCode.ERROR_MODEL), ] for words, code in keywords_mapping: if re.search("({})".format("|".join(words)), error_str): return code return LLMErrorCode.ERROR_GENERIC def _clean_conf(self, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] return gen_conf def _chat(self, history, gen_conf, **kwargs): logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2)) if self.model_name.lower().find("qwen3") >= 0: kwargs["extra_body"] = {"enable_thinking": False} completion_args = self._construct_completion_args(history=history, stream=False, tools=False, **gen_conf) response = litellm.completion( **completion_args, drop_params=True, timeout=self.timeout, ) # response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs) if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]): return "", 0 ans = response.choices[0].message.content.strip() if response.choices[0].finish_reason == "length": ans = self._length_stop(ans) return ans, self.total_token_count(response) def _chat_streamly(self, history, gen_conf, **kwargs): logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4)) reasoning_start = False completion_args = self._construct_completion_args(history=history, stream=True, tools=False, **gen_conf) stop = kwargs.get("stop") if stop: completion_args["stop"] = stop response = litellm.completion( **completion_args, drop_params=True, timeout=self.timeout, ) for resp in response: if not hasattr(resp, "choices") or not resp.choices: continue delta = resp.choices[0].delta if not hasattr(delta, "content") or delta.content is None: delta.content = "" if kwargs.get("with_reasoning", True) and hasattr(delta, "reasoning_content") and delta.reasoning_content: ans = "" if not reasoning_start: reasoning_start = True ans = "" ans += delta.reasoning_content + "" else: reasoning_start = False ans = delta.content tol = self.total_token_count(resp) if not tol: tol = num_tokens_from_string(delta.content) finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else "" if finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans, tol def _length_stop(self, ans): if is_chinese([ans]): return ans + LENGTH_NOTIFICATION_CN return ans + LENGTH_NOTIFICATION_EN def _exceptions(self, e, attempt): logging.exception("OpenAI chat_with_tools") # Classify the error error_code = self._classify_error(e) if attempt == self.max_retries: error_code = LLMErrorCode.ERROR_MAX_RETRIES # Check if it's a rate limit error or server error and not the last attempt should_retry = error_code == LLMErrorCode.ERROR_RATE_LIMIT or error_code == LLMErrorCode.ERROR_SERVER if not should_retry: return f"{ERROR_PREFIX}: {error_code} - {str(e)}" delay = self._get_delay() logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})") time.sleep(delay) def _verbose_tool_use(self, name, args, res): return "" + json.dumps({"name": name, "args": args, "result": res}, ensure_ascii=False, indent=2) + "" def _append_history(self, hist, tool_call, tool_res): hist.append( { "role": "assistant", "tool_calls": [ { "index": tool_call.index, "id": tool_call.id, "function": { "name": tool_call.function.name, "arguments": tool_call.function.arguments, }, "type": "function", }, ], } ) try: if isinstance(tool_res, dict): tool_res = json.dumps(tool_res, ensure_ascii=False) finally: hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)}) return hist def bind_tools(self, toolcall_session, tools): if not (toolcall_session and tools): return self.is_tools = True self.toolcall_session = toolcall_session self.tools = tools def _construct_completion_args(self, history, stream: bool, tools: bool, **kwargs): completion_args = { "model": self.model_name, "messages": history, "api_key": self.api_key, **kwargs, } if stream: completion_args.update( { "stream": stream, } ) if tools and self.tools: completion_args.update( { "tools": self.tools, "tool_choice": "auto", } ) if self.provider in FACTORY_DEFAULT_BASE_URL: completion_args.update({"api_base": self.base_url}) elif self.provider == SupportedLiteLLMProvider.Bedrock: completion_args.pop("api_key", None) completion_args.pop("api_base", None) completion_args.update( { "aws_access_key_id": self.bedrock_ak, "aws_secret_access_key": self.bedrock_sk, "aws_region_name": self.bedrock_region, } ) return completion_args def chat_with_tools(self, system: str, history: list, gen_conf: dict = {}): gen_conf = self._clean_conf(gen_conf) if system: history.insert(0, {"role": "system", "content": system}) ans = "" tk_count = 0 hist = deepcopy(history) # Implement exponential backoff retry strategy for attempt in range(self.max_retries + 1): history = deepcopy(hist) # deepcopy is required here try: for _ in range(self.max_rounds + 1): logging.info(f"{self.tools=}") completion_args = self._construct_completion_args(history=history, stream=False, tools=True, **gen_conf) response = litellm.completion( **completion_args, drop_params=True, timeout=self.timeout, ) tk_count += self.total_token_count(response) if not hasattr(response, "choices") or not response.choices or not response.choices[0].message: raise Exception(f"500 response structure error. Response: {response}") message = response.choices[0].message if not hasattr(message, "tool_calls") or not message.tool_calls: if hasattr(message, "reasoning_content") and message.reasoning_content: ans += f"{message.reasoning_content}" ans += message.content or "" if response.choices[0].finish_reason == "length": ans = self._length_stop(ans) return ans, tk_count for tool_call in message.tool_calls: logging.info(f"Response {tool_call=}") name = tool_call.function.name try: args = json_repair.loads(tool_call.function.arguments) tool_response = self.toolcall_session.tool_call(name, args) history = self._append_history(history, tool_call, tool_response) ans += self._verbose_tool_use(name, args, tool_response) except Exception as e: logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}") history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)}) ans += self._verbose_tool_use(name, {}, str(e)) logging.warning(f"Exceed max rounds: {self.max_rounds}") history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"}) response, token_count = self._chat(history, gen_conf) ans += response tk_count += token_count return ans, tk_count except Exception as e: e = self._exceptions(e, attempt) if e: return e, tk_count assert False, "Shouldn't be here." def chat(self, system, history, gen_conf={}, **kwargs): if system: history.insert(0, {"role": "system", "content": system}) gen_conf = self._clean_conf(gen_conf) # Implement exponential backoff retry strategy for attempt in range(self.max_retries + 1): try: response = self._chat(history, gen_conf, **kwargs) return response except Exception as e: e = self._exceptions(e, attempt) if e: return e, 0 assert False, "Shouldn't be here." def _wrap_toolcall_message(self, stream): final_tool_calls = {} for chunk in stream: for tool_call in chunk.choices[0].delta.tool_calls or []: index = tool_call.index if index not in final_tool_calls: final_tool_calls[index] = tool_call final_tool_calls[index].function.arguments += tool_call.function.arguments return final_tool_calls def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict = {}): gen_conf = self._clean_conf(gen_conf) tools = self.tools if system: history.insert(0, {"role": "system", "content": system}) total_tokens = 0 hist = deepcopy(history) # Implement exponential backoff retry strategy for attempt in range(self.max_retries + 1): history = deepcopy(hist) # deepcopy is required here try: for _ in range(self.max_rounds + 1): reasoning_start = False logging.info(f"{tools=}") completion_args = self._construct_completion_args(history=history, stream=True, tools=True, **gen_conf) response = litellm.completion( **completion_args, drop_params=True, timeout=self.timeout, ) final_tool_calls = {} answer = "" for resp in response: if not hasattr(resp, "choices") or not resp.choices: continue delta = resp.choices[0].delta if hasattr(delta, "tool_calls") and delta.tool_calls: for tool_call in delta.tool_calls: index = tool_call.index if index not in final_tool_calls: if not tool_call.function.arguments: tool_call.function.arguments = "" final_tool_calls[index] = tool_call else: final_tool_calls[index].function.arguments += tool_call.function.arguments or "" continue if not hasattr(delta, "content") or delta.content is None: delta.content = "" if hasattr(delta, "reasoning_content") and delta.reasoning_content: ans = "" if not reasoning_start: reasoning_start = True ans = "" ans += delta.reasoning_content + "" yield ans else: reasoning_start = False answer += delta.content yield delta.content tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(delta.content) else: total_tokens += tol finish_reason = getattr(resp.choices[0], "finish_reason", "") if finish_reason == "length": yield self._length_stop("") if answer: yield total_tokens return for tool_call in final_tool_calls.values(): name = tool_call.function.name try: args = json_repair.loads(tool_call.function.arguments) yield self._verbose_tool_use(name, args, "Begin to call...") tool_response = self.toolcall_session.tool_call(name, args) history = self._append_history(history, tool_call, tool_response) yield self._verbose_tool_use(name, args, tool_response) except Exception as e: logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}") history.append( { "role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n{str(e)}", } ) yield self._verbose_tool_use(name, {}, str(e)) logging.warning(f"Exceed max rounds: {self.max_rounds}") history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"}) completion_args = self._construct_completion_args(history=history, stream=True, tools=True, **gen_conf) response = litellm.completion( **completion_args, drop_params=True, timeout=self.timeout, ) for resp in response: if not hasattr(resp, "choices") or not resp.choices: continue delta = resp.choices[0].delta if not hasattr(delta, "content") or delta.content is None: continue tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(delta.content) else: total_tokens += tol yield delta.content yield total_tokens return except Exception as e: e = self._exceptions(e, attempt) if e: yield e yield total_tokens return assert False, "Shouldn't be here." def chat_streamly(self, system, history, gen_conf: dict = {}, **kwargs): if system: history.insert(0, {"role": "system", "content": system}) gen_conf = self._clean_conf(gen_conf) ans = "" total_tokens = 0 try: for delta_ans, tol in self._chat_streamly(history, gen_conf, **kwargs): yield delta_ans total_tokens += tol except openai.APIError as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens def total_token_count(self, resp): try: return resp.usage.total_tokens except Exception: pass try: return resp["usage"]["total_tokens"] except Exception: pass return 0 def _calculate_dynamic_ctx(self, history): """Calculate dynamic context window size""" def count_tokens(text): """Calculate token count for text""" # Simple calculation: 1 token per ASCII character # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.) total = 0 for char in text: if ord(char) < 128: # ASCII characters total += 1 else: # Non-ASCII characters (Chinese, Japanese, Korean, etc.) total += 2 return total # Calculate total tokens for all messages total_tokens = 0 for message in history: content = message.get("content", "") # Calculate content tokens content_tokens = count_tokens(content) # Add role marker token overhead role_tokens = 4 total_tokens += content_tokens + role_tokens # Apply 1.2x buffer ratio total_tokens_with_buffer = int(total_tokens * 1.2) if total_tokens_with_buffer <= 8192: ctx_size = 8192 else: ctx_multiplier = (total_tokens_with_buffer // 8192) + 1 ctx_size = ctx_multiplier * 8192 return ctx_size