# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import re from io import BytesIO from xpinyin import Pinyin import numpy as np import pandas as pd from collections import Counter # from openpyxl import load_workbook, Workbook from dateutil.parser import parse as datetime_parse from api.db.services.knowledgebase_service import KnowledgebaseService from deepdoc.parser.utils import get_text from rag.nlp import rag_tokenizer, tokenize from deepdoc.parser import ExcelParser class Excel(ExcelParser): def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None): if not binary: wb = Excel._load_excel_to_workbook(fnm) else: wb = Excel._load_excel_to_workbook(BytesIO(binary)) total = 0 for sheetname in wb.sheetnames: total += len(list(wb[sheetname].rows)) res, fails, done = [], [], 0 rn = 0 for sheetname in wb.sheetnames: ws = wb[sheetname] rows = list(ws.rows) if not rows: continue headers, header_rows = self._parse_headers(ws, rows) if not headers: continue data = [] for i, r in enumerate(rows[header_rows:]): rn += 1 if rn - 1 < from_page: continue if rn - 1 >= to_page: break row_data = self._extract_row_data(ws, r, header_rows + i, len(headers)) if row_data is None: fails.append(str(i)) continue if self._is_empty_row(row_data): continue data.append(row_data) done += 1 if len(data) == 0: continue df = pd.DataFrame(data, columns=headers) res.append(df) callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else ""))) return res def _parse_headers(self, ws, rows): if len(rows) == 0: return [], 0 has_complex_structure = self._has_complex_header_structure(ws, rows) if has_complex_structure: return self._parse_multi_level_headers(ws, rows) else: return self._parse_simple_headers(rows) def _has_complex_header_structure(self, ws, rows): if len(rows) < 1: return False merged_ranges = list(ws.merged_cells.ranges) # 检查前两行是否涉及合并单元格 for rng in merged_ranges: if rng.min_row <= 2: # 只要合并区域涉及第1或第2行 return True return False def _row_looks_like_header(self, row): header_like_cells = 0 data_like_cells = 0 non_empty_cells = 0 for cell in row: if cell.value is not None: non_empty_cells += 1 val = str(cell.value).strip() if self._looks_like_header(val): header_like_cells += 1 elif self._looks_like_data(val): data_like_cells += 1 if non_empty_cells == 0: return False return header_like_cells >= data_like_cells def _parse_simple_headers(self, rows): if not rows: return [], 0 header_row = rows[0] headers = [] for cell in header_row: if cell.value is not None: header_value = str(cell.value).strip() if header_value: headers.append(header_value) else: pass final_headers = [] for i, cell in enumerate(header_row): if cell.value is not None: header_value = str(cell.value).strip() if header_value: final_headers.append(header_value) else: final_headers.append(f"Column_{i + 1}") else: final_headers.append(f"Column_{i + 1}") return final_headers, 1 def _parse_multi_level_headers(self, ws, rows): if len(rows) < 2: return [], 0 header_rows = self._detect_header_rows(rows) if header_rows == 1: return self._parse_simple_headers(rows) else: return self._build_hierarchical_headers(ws, rows, header_rows), header_rows def _detect_header_rows(self, rows): if len(rows) < 2: return 1 header_rows = 1 max_check_rows = min(5, len(rows)) for i in range(1, max_check_rows): row = rows[i] if self._row_looks_like_header(row): header_rows = i + 1 else: break return header_rows def _looks_like_header(self, value): if len(value) < 1: return False if any(ord(c) > 127 for c in value): return True if len([c for c in value if c.isalpha()]) >= 2: return True if any(c in value for c in ["(", ")", ":", ":", "(", ")", "_", "-"]): return True return False def _looks_like_data(self, value): if len(value) == 1 and value.upper() in ["Y", "N", "M", "X", "/", "-"]: return True if value.replace(".", "").replace("-", "").replace(",", "").isdigit(): return True if value.startswith("0x") and len(value) <= 10: return True return False def _build_hierarchical_headers(self, ws, rows, header_rows): headers = [] max_col = max(len(row) for row in rows[:header_rows]) if header_rows > 0 else 0 merged_ranges = list(ws.merged_cells.ranges) for col_idx in range(max_col): header_parts = [] for row_idx in range(header_rows): if col_idx < len(rows[row_idx]): cell_value = rows[row_idx][col_idx].value merged_value = self._get_merged_cell_value(ws, row_idx + 1, col_idx + 1, merged_ranges) if merged_value is not None: cell_value = merged_value if cell_value is not None: cell_value = str(cell_value).strip() if cell_value and cell_value not in header_parts and self._is_valid_header_part(cell_value): header_parts.append(cell_value) if header_parts: header = "-".join(header_parts) headers.append(header) else: headers.append(f"Column_{col_idx + 1}") final_headers = [h for h in headers if h and h != "-"] return final_headers def _is_valid_header_part(self, value): if len(value) == 1 and value.upper() in ["Y", "N", "M", "X"]: return False if value.replace(".", "").replace("-", "").replace(",", "").isdigit(): return False if value in ["/", "-", "+", "*", "="]: return False return True def _get_merged_cell_value(self, ws, row, col, merged_ranges): for merged_range in merged_ranges: if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col: return ws.cell(merged_range.min_row, merged_range.min_col).value return None def _extract_row_data(self, ws, row, absolute_row_idx, expected_cols): row_data = [] merged_ranges = list(ws.merged_cells.ranges) actual_row_num = absolute_row_idx + 1 for col_idx in range(expected_cols): cell_value = None actual_col_num = col_idx + 1 try: cell_value = ws.cell(row=actual_row_num, column=actual_col_num).value except ValueError: if col_idx < len(row): cell_value = row[col_idx].value if cell_value is None: merged_value = self._get_merged_cell_value(ws, actual_row_num, actual_col_num, merged_ranges) if merged_value is not None: cell_value = merged_value else: cell_value = self._get_inherited_value(ws, actual_row_num, actual_col_num, merged_ranges) row_data.append(cell_value) return row_data def _get_inherited_value(self, ws, row, col, merged_ranges): for merged_range in merged_ranges: if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col: return ws.cell(merged_range.min_row, merged_range.min_col).value return None def _is_empty_row(self, row_data): for val in row_data: if val is not None and str(val).strip() != "": return False return True def trans_datatime(s): try: return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S") except Exception: pass def trans_bool(s): if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$", str(s).strip(), flags=re.IGNORECASE): return "yes" if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE): return "no" def column_data_type(arr): arr = list(arr) counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0} trans = {t: f for f, t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]} float_flag = False for a in arr: if a is None: continue if re.match(r"[+-]?[0-9]+$", str(a).replace("%%", "")) and not str(a).replace("%%", "").startswith("0"): counts["int"] += 1 if int(str(a)) > 2**63 - 1: float_flag = True break elif re.match(r"[+-]?[0-9.]{,19}$", str(a).replace("%%", "")) and not str(a).replace("%%", "").startswith("0"): counts["float"] += 1 elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE): counts["bool"] += 1 elif trans_datatime(str(a)): counts["datetime"] += 1 else: counts["text"] += 1 if float_flag: ty = "float" else: counts = sorted(counts.items(), key=lambda x: x[1] * -1) ty = counts[0][0] for i in range(len(arr)): if arr[i] is None: continue try: arr[i] = trans[ty](str(arr[i])) except Exception: arr[i] = None # if ty == "text": # if len(arr) > 128 and uni / len(arr) < 0.1: # ty = "keyword" return arr, ty def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese", callback=None, **kwargs): """ Excel and csv(txt) format files are supported. For csv or txt file, the delimiter between columns is TAB. The first line must be column headers. Column headers must be meaningful terms inorder to make our NLP model understanding. It's good to enumerate some synonyms using slash '/' to separate, and even better to enumerate values using brackets like 'gender/sex(male, female)'. Here are some examples for headers: 1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL) 2. 姓名/名字\t电话/手机/微信\t最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA) Every row in table will be treated as a chunk. """ if re.search(r"\.xlsx?$", filename, re.IGNORECASE): callback(0.1, "Start to parse.") excel_parser = Excel() dfs = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback) elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE): callback(0.1, "Start to parse.") txt = get_text(filename, binary) lines = txt.split("\n") fails = [] headers = lines[0].split(kwargs.get("delimiter", "\t")) rows = [] for i, line in enumerate(lines[1:]): if i < from_page: continue if i >= to_page: break row = [field for field in line.split(kwargs.get("delimiter", "\t"))] if len(row) != len(headers): fails.append(str(i)) continue rows.append(row) callback(0.3, ("Extract records: {}~{}".format(from_page, min(len(lines), to_page)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else ""))) dfs = [pd.DataFrame(np.array(rows), columns=headers)] else: raise NotImplementedError("file type not supported yet(excel, text, csv supported)") res = [] PY = Pinyin() fieds_map = {"text": "_tks", "int": "_long", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"} for df in dfs: for n in ["id", "_id", "index", "idx"]: if n in df.columns: del df[n] clmns = df.columns.values if len(clmns) != len(set(clmns)): col_counts = Counter(clmns) duplicates = [col for col, count in col_counts.items() if count > 1] if duplicates: raise ValueError(f"Duplicate column names detected: {duplicates}\nFrom: {clmns}") txts = list(copy.deepcopy(clmns)) py_clmns = [PY.get_pinyins(re.sub(r"(/.*|([^()]+?)|\([^()]+?\))", "", str(n)), "_")[0] for n in clmns] clmn_tys = [] for j in range(len(clmns)): cln, ty = column_data_type(df[clmns[j]]) clmn_tys.append(ty) df[clmns[j]] = cln if ty == "text": txts.extend([str(c) for c in cln if c]) clmns_map = [(py_clmns[i].lower() + fieds_map[clmn_tys[i]], str(clmns[i]).replace("_", " ")) for i in range(len(clmns))] eng = lang.lower() == "english" # is_english(txts) for ii, row in df.iterrows(): d = {"docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))} row_txt = [] for j in range(len(clmns)): if row[clmns[j]] is None: continue if not str(row[clmns[j]]): continue if not isinstance(row[clmns[j]], pd.Series) and pd.isna(row[clmns[j]]): continue fld = clmns_map[j][0] d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else rag_tokenizer.tokenize(row[clmns[j]]) row_txt.append("{}:{}".format(clmns[j], row[clmns[j]])) if not row_txt: continue tokenize(d, "; ".join(row_txt), eng) res.append(d) KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}}) callback(0.35, "") return res if __name__ == "__main__": import sys def dummy(prog=None, msg=""): pass chunk(sys.argv[1], callback=dummy)