#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import base64
import json
import os
from abc import ABC
from copy import deepcopy
from io import BytesIO
from urllib.parse import urljoin
import requests
from openai import OpenAI
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
from rag.nlp import is_english
from rag.prompts import vision_llm_describe_prompt
from rag.utils import num_tokens_from_string
class Base(ABC):
    def __init__(self, **kwargs):
        # Configure retry parameters
        self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
        self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
        self.max_rounds = kwargs.get("max_rounds", 5)
        self.is_tools = False
        self.tools = []
        self.toolcall_sessions = {}
    def describe(self, image):
        raise NotImplementedError("Please implement encode method!")
    def describe_with_prompt(self, image, prompt=None):
        raise NotImplementedError("Please implement encode method!")
    def _form_history(self, system, history, images=[]):
        hist = []
        if system:
            hist.append({"role": "system", "content": system})
        for h in history:
            if images and h["role"] == "user":
                h["content"] = self._image_prompt(h["content"], images)
                images = []
            hist.append(h)
        return hist
    def _image_prompt(self, text, images):
        if not images:
            return text
        if isinstance(images, str):
            images = [images]
        pmpt = [{"type": "text", "text": text}]
        for img in images:
            pmpt.append({
                "type": "image_url",
                "image_url": {
                    "url": f"data:image/jpeg;base64,{img}" if img[:4] != "data" else img
                }
            })
        return pmpt
    def chat(self, system, history, gen_conf, images=[], **kwargs):
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=self._form_history(system, history, images)
            )
            return response.choices[0].message.content.strip(), response.usage.total_tokens
        except Exception as e:
            return "**ERROR**: " + str(e), 0
    def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
        ans = ""
        tk_count = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=self._form_history(system, history, images),
                stream=True
            )
            for resp in response:
                if not resp.choices[0].delta.content:
                    continue
                delta = resp.choices[0].delta.content
                ans = delta
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                if resp.choices[0].finish_reason == "stop":
                    tk_count += resp.usage.total_tokens
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)
        yield tk_count
    @staticmethod
    def image2base64(image):
        if isinstance(image, bytes):
            return base64.b64encode(image).decode("utf-8")
        if isinstance(image, BytesIO):
            return base64.b64encode(image.getvalue()).decode("utf-8")
        buffered = BytesIO()
        try:
            image.save(buffered, format="JPEG")
        except Exception:
            image.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode("utf-8")
    def prompt(self, b64):
        return [
            {
                "role": "user",
                "content": self._image_prompt(
                    "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
                    if self.lang.lower() == "chinese"
                    else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
                    b64
                )
            }
        ]
    def vision_llm_prompt(self, b64, prompt=None):
        return [
            {
                "role": "user",
                "content": self._image_prompt(prompt if prompt else vision_llm_describe_prompt(), b64)
            }
        ]
class GptV4(Base):
    _FACTORY_NAME = "OpenAI"
    def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1", **kwargs):
        if not base_url:
            base_url = "https://api.openai.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang
        super().__init__(**kwargs)
    def describe(self, image):
        b64 = self.image2base64(image)
        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=self.prompt(b64),
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens
    def describe_with_prompt(self, image, prompt=None):
        b64 = self.image2base64(image)
        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=self.vision_llm_prompt(b64, prompt),
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens
class AzureGptV4(GptV4):
    _FACTORY_NAME = "Azure-OpenAI"
    def __init__(self, key, model_name, lang="Chinese", **kwargs):
        api_key = json.loads(key).get("api_key", "")
        api_version = json.loads(key).get("api_version", "2024-02-01")
        self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
        self.model_name = model_name
        self.lang = lang
        Base.__init__(self, **kwargs)
class xAICV(GptV4):
    _FACTORY_NAME = "xAI"
    def __init__(self, key, model_name="grok-3", lang="Chinese", base_url=None, **kwargs):
        if not base_url:
            base_url = "https://api.x.ai/v1"
        super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
class QWenCV(GptV4):
    _FACTORY_NAME = "Tongyi-Qianwen"
    def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", base_url=None, **kwargs):
        if not base_url:
            base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
        super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
class HunyuanCV(GptV4):
    _FACTORY_NAME = "Tencent Hunyuan"
    def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
        if not base_url:
            base_url = "https://api.hunyuan.cloud.tencent.com/v1"
        super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
class Zhipu4V(GptV4):
    _FACTORY_NAME = "ZHIPU-AI"
    def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name
        self.lang = lang
        Base.__init__(self, **kwargs)
class StepFunCV(GptV4):
    _FACTORY_NAME = "StepFun"
    def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1", **kwargs):
        if not base_url:
            base_url = "https://api.stepfun.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang
        Base.__init__(self, **kwargs)
class LmStudioCV(GptV4):
    _FACTORY_NAME = "LM-Studio"
    def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        base_url = urljoin(base_url, "v1")
        self.client = OpenAI(api_key="lm-studio", base_url=base_url)
        self.model_name = model_name
        self.lang = lang
        Base.__init__(self, **kwargs)
class OpenAI_APICV(GptV4):
    _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
    def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
        if not base_url:
            raise ValueError("url cannot be None")
        base_url = urljoin(base_url, "v1")
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name.split("___")[0]
        self.lang = lang
        Base.__init__(self, **kwargs)
class TogetherAICV(GptV4):
    _FACTORY_NAME = "TogetherAI"
    def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1", **kwargs):
        if not base_url:
            base_url = "https://api.together.xyz/v1"
        super().__init__(key, model_name, lang, base_url, **kwargs)
class YiCV(GptV4):
    _FACTORY_NAME = "01.AI"
    def __init__(
            self,
            key,
            model_name,
            lang="Chinese",
            base_url="https://api.lingyiwanwu.com/v1", **kwargs
    ):
        if not base_url:
            base_url = "https://api.lingyiwanwu.com/v1"
        super().__init__(key, model_name, lang, base_url, **kwargs)
class SILICONFLOWCV(GptV4):
    _FACTORY_NAME = "SILICONFLOW"
    def __init__(
            self,
            key,
            model_name,
            lang="Chinese",
            base_url="https://api.siliconflow.cn/v1", **kwargs
    ):
        if not base_url:
            base_url = "https://api.siliconflow.cn/v1"
        super().__init__(key, model_name, lang, base_url, **kwargs)
class OpenRouterCV(GptV4):
    _FACTORY_NAME = "OpenRouter"
    def __init__(
            self,
            key,
            model_name,
            lang="Chinese",
            base_url="https://openrouter.ai/api/v1", **kwargs
    ):
        if not base_url:
            base_url = "https://openrouter.ai/api/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang
        Base.__init__(self, **kwargs)
class LocalAICV(GptV4):
    _FACTORY_NAME = "LocalAI"
    def __init__(self, key, model_name, base_url, lang="Chinese", **kwargs):
        if not base_url:
            raise ValueError("Local cv model url cannot be None")
        base_url = urljoin(base_url, "v1")
        self.client = OpenAI(api_key="empty", base_url=base_url)
        self.model_name = model_name.split("___")[0]
        self.lang = lang
        Base.__init__(self, **kwargs)
class XinferenceCV(GptV4):
    _FACTORY_NAME = "Xinference"
    def __init__(self, key, model_name="", lang="Chinese", base_url="", **kwargs):
        base_url = urljoin(base_url, "v1")
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang
        Base.__init__(self, **kwargs)
class GPUStackCV(GptV4):
    _FACTORY_NAME = "GPUStack"
    def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        base_url = urljoin(base_url, "v1")
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang
        Base.__init__(self, **kwargs)
class LocalCV(Base):
    _FACTORY_NAME = "Moonshot"
    def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
        pass
    def describe(self, image):
        return "", 0
class OllamaCV(Base):
    _FACTORY_NAME = "Ollama"
    def __init__(self, key, model_name, lang="Chinese", **kwargs):
        from ollama import Client
        self.client = Client(host=kwargs["base_url"])
        self.model_name = model_name
        self.lang = lang
        self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
        Base.__init__(self, **kwargs)
    def _clean_conf(self, gen_conf):
        options = {}
        if "temperature" in gen_conf:
            options["temperature"] = gen_conf["temperature"]
        if "top_p" in gen_conf:
            options["top_k"] = gen_conf["top_p"]
        if "presence_penalty" in gen_conf:
            options["presence_penalty"] = gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf:
            options["frequency_penalty"] = gen_conf["frequency_penalty"]
        return options
    def _form_history(self, system, history, images=[]):
        hist = deepcopy(history)
        if system and hist[0]["role"] == "user":
            hist.insert(0, {"role": "system", "content": system})
        if not images:
            return hist
        for his in hist:
            if his["role"] == "user":
                his["images"] = images
                break
        return hist
    def describe(self, image):
        prompt = self.prompt("")
        try:
            response = self.client.generate(
                model=self.model_name,
                prompt=prompt[0]["content"][0]["text"],
                images=[image],
            )
            ans = response["response"].strip()
            return ans, 128
        except Exception as e:
            return "**ERROR**: " + str(e), 0
    def describe_with_prompt(self, image, prompt=None):
        vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
        try:
            response = self.client.generate(
                model=self.model_name,
                prompt=vision_prompt[0]["content"][0]["text"],
                images=[image],
            )
            ans = response["response"].strip()
            return ans, 128
        except Exception as e:
            return "**ERROR**: " + str(e), 0
    def chat(self, system, history, gen_conf, images=[]):
        try:
            response = self.client.chat(
                model=self.model_name,
                messages=self._form_history(system, history, images),
                options=self._clean_conf(gen_conf),
                keep_alive=self.keep_alive
            )
            ans = response["message"]["content"].strip()
            return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
        except Exception as e:
            return "**ERROR**: " + str(e), 0
    def chat_streamly(self, system, history, gen_conf, images=[]):
        ans = ""
        try:
            response = self.client.chat(
                model=self.model_name,
                messages=self._form_history(system, history, images),
                stream=True,
                options=self._clean_conf(gen_conf),
                keep_alive=self.keep_alive
            )
            for resp in response:
                if resp["done"]:
                    yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
                ans = resp["message"]["content"]
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)
        yield 0
class GeminiCV(Base):
    _FACTORY_NAME = "Gemini"
    def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
        from google.generativeai import GenerativeModel, client
        client.configure(api_key=key)
        _client = client.get_default_generative_client()
        self.model_name = model_name
        self.model = GenerativeModel(model_name=self.model_name)
        self.model._client = _client
        self.lang = lang
        Base.__init__(self, **kwargs)
    def _form_history(self, system, history, images=[]):
        hist = []
        if system:
            hist.append({"role": "user", "parts": [system, history[0]["content"]]})
        for img in images:
            hist[0]["parts"].append(("data:image/jpeg;base64," + img) if img[:4]!="data" else img)
        for h in history[1:]:
            hist.append({"role": "user" if h["role"]=="user" else "model", "parts": [h["content"]]})
        return hist
    def describe(self, image):
        from PIL.Image import open
        prompt = (
            "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
            if self.lang.lower() == "chinese"
            else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
        )
        b64 = self.image2base64(image)
        img = open(BytesIO(base64.b64decode(b64)))
        input = [prompt, img]
        res = self.model.generate_content(input)
        img.close()
        return res.text, res.usage_metadata.total_token_count
    def describe_with_prompt(self, image, prompt=None):
        from PIL.Image import open
        b64 = self.image2base64(image)
        vision_prompt = prompt if prompt else vision_llm_describe_prompt()
        img = open(BytesIO(base64.b64decode(b64)))
        input = [vision_prompt, img]
        res = self.model.generate_content(
            input,
        )
        img.close()
        return res.text, res.usage_metadata.total_token_count
    def chat(self, system, history, gen_conf, images=[]):
        from transformers import GenerationConfig
        try:
            response = self.model.generate_content(
                self._form_history(system, history, images),
                generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)))
            ans = response.text
            return ans, response.usage_metadata.total_token_count
        except Exception as e:
            return "**ERROR**: " + str(e), 0
    def chat_streamly(self, system, history, gen_conf, images=[]):
        from transformers import GenerationConfig
        ans = ""
        response = None
        try:
            response = self.model.generate_content(
                self._form_history(system, history, images),
                generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)),
                stream=True,
            )
            for resp in response:
                if not resp.text:
                    continue
                ans = resp.text
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)
        if response and hasattr(response, "usage_metadata") and hasattr(response.usage_metadata, "total_token_count"):
            yield response.usage_metadata.total_token_count
        else:
            yield 0
            
class NvidiaCV(Base):
    _FACTORY_NAME = "NVIDIA"
    def __init__(
        self,
        key,
        model_name,
        lang="Chinese",
        base_url="https://ai.api.nvidia.com/v1/vlm", **kwargs
    ):
        if not base_url:
            base_url = ("https://ai.api.nvidia.com/v1/vlm",)
        self.lang = lang
        factory, llm_name = model_name.split("/")
        if factory != "liuhaotian":
            self.base_url = urljoin(base_url, f"{factory}/{llm_name}")
        else:
            self.base_url = urljoin(f"{base_url}/community", llm_name.replace("-v1.6", "16"))
        self.key = key
        Base.__init__(self, **kwargs)
    def _image_prompt(self, text, images):
        if not images:
            return text
        htmls = ""
        for img in images:
            htmls += ' 
'.format(f"data:image/jpeg;base64,{img}" if img[:4] != "data" else img)
        return text + htmls
    def describe(self, image):
        b64 = self.image2base64(image)
        response = requests.post(
            url=self.base_url,
            headers={
                "accept": "application/json",
                "content-type": "application/json",
                "Authorization": f"Bearer {self.key}",
            },
            json={"messages": self.prompt(b64)},
        )
        response = response.json()
        return (
            response["choices"][0]["message"]["content"].strip(),
            response["usage"]["total_tokens"],
        )
    def _request(self, msg, gen_conf={}):
        response = requests.post(
            url=self.base_url,
            headers={
                "accept": "application/json",
                "content-type": "application/json",
                "Authorization": f"Bearer {self.key}",
            },
            json={
                "messages": msg, **gen_conf
            },
        )
        return response.json()
    def describe_with_prompt(self, image, prompt=None):
        b64 = self.image2base64(image)
        vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
        response = self._request(vision_prompt)
        return (
            response["choices"][0]["message"]["content"].strip(),
            response["usage"]["total_tokens"],
        )
    def chat(self, system, history, gen_conf, images=[], **kwargs):
        try:
            response = self._request(self._form_history(system, history, images), gen_conf)
            return (
                response["choices"][0]["message"]["content"].strip(),
                response["usage"]["total_tokens"],
            )
        except Exception as e:
            return "**ERROR**: " + str(e), 0
    def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
        total_tokens = 0
        try:
            response = self._request(self._form_history(system, history, images), gen_conf)
            cnt = response["choices"][0]["message"]["content"]
            if "usage" in response and "total_tokens" in response["usage"]:
                total_tokens += response["usage"]["total_tokens"]
            for resp in cnt:
                yield resp
        except Exception as e:
            yield "\n**ERROR**: " + str(e)
        yield total_tokens
class AnthropicCV(Base):
    _FACTORY_NAME = "Anthropic"
    def __init__(self, key, model_name, base_url=None, **kwargs):
        import anthropic
        self.client = anthropic.Anthropic(api_key=key)
        self.model_name = model_name
        self.system = ""
        self.max_tokens = 8192
        if "haiku" in self.model_name or "opus" in self.model_name:
            self.max_tokens = 4096
        Base.__init__(self, **kwargs)
    def _image_prompt(self, text, images):
        if not images:
            return text
        pmpt = [{"type": "text", "text": text}]
        for img in images:
            pmpt.append({
                        "type": "image",
                        "source": {
                            "type": "base64",
                            "media_type": "image/jpeg" if img[:4] != "data" else img.split(":")[1].split(";")[0],
                            "data": img if img[:4] != "data" else img.split(",")[1]
                        },
                    }
            )
        return pmpt
    def describe(self, image):
        b64 = self.image2base64(image)
        response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=self.prompt(b64))
        return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
    def describe_with_prompt(self, image, prompt=None):
        b64 = self.image2base64(image)
        prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
        response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=prompt)
        return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
    def _clean_conf(self, gen_conf):
        if "presence_penalty" in gen_conf:
            del gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf:
            del gen_conf["frequency_penalty"]
        if "max_token" in gen_conf:
            gen_conf["max_tokens"] = self.max_tokens
        return gen_conf
    def chat(self, system, history, gen_conf, images=[]):
        gen_conf = self._clean_conf(gen_conf)
        ans = ""
        try:
            response = self.client.messages.create(
                model=self.model_name,
                messages=self._form_history(system, history, images),
                system=system,
                stream=False,
                **gen_conf,
            ).to_dict()
            ans = response["content"][0]["text"]
            if response["stop_reason"] == "max_tokens":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
            return (
                ans,
                response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
            )
        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0
    def chat_streamly(self, system, history, gen_conf, images=[]):
        gen_conf = self._clean_conf(gen_conf)
        total_tokens = 0
        try:
            response = self.client.messages.create(
                model=self.model_name,
                messages=self._form_history(system, history, images),
                system=system,
                stream=True,
                **gen_conf,
            )
            think = False
            for res in response:
                if res.type == "content_block_delta":
                    if res.delta.type == "thinking_delta" and res.delta.thinking:
                        if not think:
                            yield ""
                            think = True
                        yield res.delta.thinking
                        total_tokens += num_tokens_from_string(res.delta.thinking)
                    elif think:
                        yield ""
                    else:
                        yield res.delta.text
                        total_tokens += num_tokens_from_string(res.delta.text)
        except Exception as e:
            yield "\n**ERROR**: " + str(e)
        yield total_tokens
class GoogleCV(AnthropicCV, GeminiCV):
    _FACTORY_NAME = "Google Cloud"
    def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
        import base64
        from google.oauth2 import service_account
        key = json.loads(key)
        access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
        project_id = key.get("google_project_id", "")
        region = key.get("google_region", "")
        scopes = ["https://www.googleapis.com/auth/cloud-platform"]
        self.model_name = model_name
        self.lang = lang
        if "claude" in self.model_name:
            from anthropic import AnthropicVertex
            from google.auth.transport.requests import Request
            if access_token:
                credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
                request = Request()
                credits.refresh(request)
                token = credits.token
                self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
            else:
                self.client = AnthropicVertex(region=region, project_id=project_id)
        else:
            import vertexai.generative_models as glm
            from google.cloud import aiplatform
            if access_token:
                credits = service_account.Credentials.from_service_account_info(access_token)
                aiplatform.init(credentials=credits, project=project_id, location=region)
            else:
                aiplatform.init(project=project_id, location=region)
            self.client = glm.GenerativeModel(model_name=self.model_name)
        Base.__init__(self, **kwargs)
    def describe(self, image):
        if "claude" in self.model_name:
            return AnthropicCV.describe(self, image)
        else:
            return GeminiCV.describe(self, image)
    def describe_with_prompt(self, image, prompt=None):
        if "claude" in self.model_name:
            return AnthropicCV.describe_with_prompt(self, image, prompt)
        else:
            return GeminiCV.describe_with_prompt(self, image, prompt)
    def chat(self, system, history, gen_conf, images=[]):
        if "claude" in self.model_name:
            return AnthropicCV.chat(self, system, history, gen_conf, images)
        else:
            return GeminiCV.chat(self, system, history, gen_conf, images)
    def chat_streamly(self, system, history, gen_conf, images=[]):
        if "claude" in self.model_name:
            for ans in AnthropicCV.chat_streamly(self, system, history, gen_conf, images):
                yield ans
        else:
            for ans in GeminiCV.chat_streamly(self, system, history, gen_conf, images):
                yield ans