소스 검색

add use layout or not option (#145)

* add use layout or not option

* trival
tags/v0.1.0
KevinHuSh 1 년 전
부모
커밋
f6aee7f230
No account linked to committer's email address

+ 4
- 1
api/apps/conversation_app.py 파일 보기

@@ -196,7 +196,10 @@ def chat(dialog, messages, **kwargs):
for _ in range(len(questions)//2):
questions.append(questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total":0, "chunks":[],"doc_aggs":[]}
else:
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight, top=1024, aggs=False)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]

+ 6
- 1
api/apps/document_app.py 파일 보기

@@ -310,7 +310,10 @@ def change_parser():
if not e:
return get_data_error_result(retmsg="Document not found!")
if doc.parser_id.lower() == req["parser_id"].lower():
return get_json_result(data=True)
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
return get_json_result(data=True)
else: return get_json_result(data=True)
if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
return get_data_error_result(retmsg="Not supported yet!")
@@ -319,6 +322,8 @@ def change_parser():
{"parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": "0"})
if not e:
return get_data_error_result(retmsg="Document not found!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1,
doc.process_duation * -1)

+ 2
- 3
api/db/init_data.py 파일 보기

@@ -276,7 +276,7 @@ def init_llm_factory():
drop table llm_factories;
update tenant_llm set llm_factory='Tongyi-Qianwen' where llm_factory='通义千问';
update tenant_llm set llm_factory='ZHIPU-AI' where llm_factory='智谱AI';
update tenant set parser_ids='naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture';
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One';
alter table knowledgebase modify avatar longtext;
alter table user modify avatar longtext;
alter table dialog modify icon longtext;
@@ -297,5 +297,4 @@ def init_web_data():
if __name__ == '__main__':
init_web_db()
init_web_data()
add_tenant_llm()
init_web_data()

+ 17
- 1
api/db/services/document_service.py 파일 보기

@@ -118,9 +118,25 @@ class DocumentService(CommonService):
if not docs:return
return docs[0]["tenant_id"]
@classmethod
@DB.connection_context()
def get_thumbnails(cls, docids):
fields = [cls.model.id, cls.model.thumbnail]
return list(cls.model.select(*fields).where(cls.model.id.in_(docids)).dicts())
@classmethod
@DB.connection_context()
def update_parser_config(cls, id, config):
e, d = cls.get_by_id(id)
if not e:raise LookupError(f"Document({id}) not found.")
def dfs_update(old, new):
for k,v in new.items():
if k not in old:
old[k] = v
continue
if isinstance(v, dict):
assert isinstance(old[k], dict)
dfs_update(old[k], v)
else: old[k] = v
dfs_update(d.parser_config, config)
cls.update_by_id(id, {"parser_config": d.parser_config})

+ 1
- 1
api/settings.py 파일 보기

@@ -94,7 +94,7 @@ ASR_MDL = default_llm[LLM_FACTORY]["asr_model"]
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"]
API_KEY = LLM.get("api_key", "")
PARSERS = LLM.get("parsers", "naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture")
PARSERS = LLM.get("parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One")
# distribution
DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False)

+ 1
- 1
deepdoc/parser/__init__.py 파일 보기

@@ -1,6 +1,6 @@


from .pdf_parser import HuParser as PdfParser
from .pdf_parser import HuParser as PdfParser, PlainParser
from .docx_parser import HuDocxParser as DocxParser
from .excel_parser import HuExcelParser as ExcelParser
from .ppt_parser import HuPptParser as PptParser

+ 32
- 0
deepdoc/parser/pdf_parser.py 파일 보기

@@ -1073,5 +1073,37 @@ class HuParser:
return poss


class PlainParser(object):
def __call__(self, filename, **kwargs):
self.outlines = []
lines = []
try:
self.pdf = pdf2_read(filename if isinstance(filename, str) else BytesIO(filename))
outlines = self.pdf.outline
for page in self.pdf.pages:
lines.extend([t for t in page.extract_text().split("\n")])

def dfs(arr, depth):
for a in arr:
if isinstance(a, dict):
self.outlines.append((a["/Title"], depth))
continue
dfs(a, depth + 1)

dfs(outlines, 0)
except Exception as e:
logging.warning(f"Outlines exception: {e}")
if not self.outlines:
logging.warning(f"Miss outlines")

return [(l, "") for l in lines], []

def crop(self, ck, need_position):
raise NotImplementedError

@staticmethod
def remove_tag(txt):
raise NotImplementedError

if __name__ == "__main__":
pass

+ 12
- 15
rag/app/book.py 파일 보기

@@ -12,10 +12,12 @@
#
import copy
import re
from io import BytesIO
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table, add_positions
hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table, add_positions, tokenize_chunks
from rag.nlp import huqie
from deepdoc.parser import PdfParser, DocxParser
from deepdoc.parser import PdfParser, DocxParser, PlainParser
class Pdf(PdfParser):
@@ -69,10 +71,12 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page)
remove_contents_table(sections, eng=is_english(random_choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser()
sections, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
@@ -87,31 +91,24 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
sections = [(l,"") for l in sections if l]
remove_contents_table(sections, eng = is_english(random_choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
make_colon_as_title(sections)
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
if bull >= 0:
chunks = ["\n".join(ck) for ck in hierarchical_merge(bull, sections, 3)]
else:
sections = [s.split("@") for s,_ in sections]
sections = [(pr[0], "@"+pr[1]) for pr in sections if len(pr)==2]
cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
chunks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
# is it English
eng = lang.lower() == "english"#is_english(random_choices([t for t, _ in sections], k=218))
res = tokenize_table(tbls, doc, eng)
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
# wrap up to es documents
for ck in cks:
d = copy.deepcopy(doc)
ck = "\n".join(ck)
if pdf_parser:
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
ck = pdf_parser.remove_tag(ck)
tokenize(d, ck, eng)
res.append(d)
return res

+ 13
- 23
rag/app/laws.py 파일 보기

@@ -15,9 +15,9 @@ import re
from io import BytesIO
from docx import Document
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, hierarchical_merge, \
make_colon_as_title, add_positions
make_colon_as_title, add_positions, tokenize_chunks
from rag.nlp import huqie
from deepdoc.parser import PdfParser, DocxParser
from deepdoc.parser import PdfParser, DocxParser, PlainParser
from rag.settings import cron_logger
@@ -68,7 +68,7 @@ class Pdf(PdfParser):
callback(0.8, "Text extraction finished")
return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes]
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes]
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
@@ -87,11 +87,13 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
for txt in Docx()(filename, binary):
sections.append(txt)
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
for txt in pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback):
sections.append(txt)
pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser()
for txt, poss in pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback):
sections.append(txt + poss)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
@@ -114,22 +116,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
make_colon_as_title(sections)
bull = bullets_category(sections)
cks = hierarchical_merge(bull, sections, 3)
if not cks: callback(0.99, "No chunk parsed out.")
res = []
# wrap up to es documents
for ck in cks:
print("\n-".join(ck))
ck = "\n".join(ck)
d = copy.deepcopy(doc)
if pdf_parser:
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
ck = pdf_parser.remove_tag(ck)
tokenize(d, ck, eng)
res.append(d)
return res
chunks = hierarchical_merge(bull, sections, 3)
if not chunks: callback(0.99, "No chunk parsed out.")
return tokenize_chunks(["\n".join(ck) for ck in chunks], doc, eng, pdf_parser)
if __name__ == "__main__":

+ 62
- 14
rag/app/manual.py 파일 보기

@@ -2,8 +2,8 @@ import copy
import re
from api.db import ParserType
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
from deepdoc.parser import PdfParser
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
from deepdoc.parser import PdfParser, PlainParser
from rag.utils import num_tokens_from_string
@@ -30,9 +30,7 @@ class Pdf(PdfParser):
# print(b)
print("OCR:", timer()-start)
def tag(pn, left, right, top, bottom):
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
.format(pn, left, right, top, bottom)
self._layouts_rec(zoomin)
callback(0.65, "Layout analysis finished.")
@@ -49,6 +47,8 @@ class Pdf(PdfParser):
for b in self.boxes:
b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
# set pivot using the most frequent type of title,
# then merge between 2 pivot
if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1:
@@ -103,9 +103,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
pdf_parser = None
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
cks, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser()
sections, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
if sections and len(sections[0])<3: cks = [(t, l, [0]*5) for t, l in sections]
else: raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {
"docnm_kwd": filename
@@ -115,13 +116,60 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
# is it English
eng = lang.lower() == "english"#pdf_parser.is_english
# set pivot using the most frequent type of title,
# then merge between 2 pivot
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
most_level = max(0, max_lvl - 1)
levels = []
for txt, _, _ in sections:
for t, lvl in pdf_parser.outlines:
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
tks_ = set([txt[i] + txt[i + 1] for i in range(min(len(t), len(txt) - 1))])
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
levels.append(lvl)
break
else:
levels.append(max_lvl + 1)
else:
bull = bullets_category([txt for txt,_,_ in sections])
most_level, levels = title_frequency(bull, [(txt, l) for txt, l, poss in sections])
assert len(sections) == len(levels)
sec_ids = []
sid = 0
for i, lvl in enumerate(levels):
if lvl <= most_level and i > 0 and lvl != levels[i - 1]: sid += 1
sec_ids.append(sid)
# print(lvl, self.boxes[i]["text"], most_level, sid)
sections = [(txt, sec_ids[i], poss) for i, (txt, _, poss) in enumerate(sections)]
for (img, rows), poss in tbls:
sections.append((rows if isinstance(rows, str) else rows[0], -1,
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
def tag(pn, left, right, top, bottom):
if pn+left+right+top+bottom == 0:
return ""
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
.format(pn, left, right, top, bottom)
chunks = []
last_sid = -2
tk_cnt = 0
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
poss = "\t".join([tag(*pos) for pos in poss])
if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1):
if chunks:
chunks[-1] += "\n" + txt + poss
tk_cnt += num_tokens_from_string(txt)
continue
chunks.append(txt + poss)
tk_cnt = num_tokens_from_string(txt)
if sec_id > -1: last_sid = sec_id
res = tokenize_table(tbls, doc, eng)
for ck in cks:
d = copy.deepcopy(doc)
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
tokenize(d, pdf_parser.remove_tag(ck), eng)
res.append(d)
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
return res

+ 11
- 19
rag/app/naive.py 파일 보기

@@ -12,8 +12,9 @@
#
import copy
import re
from deepdoc.parser.pdf_parser import PlainParser
from rag.app import laws
from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table, add_positions
from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table, add_positions, tokenize_chunks
from deepdoc.parser import PdfParser, ExcelParser
from rag.settings import cron_logger
@@ -56,6 +57,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
"""
eng = lang.lower() == "english"#is_english(cks)
parser_config = kwargs.get("parser_config", {"chunk_token_num": 128, "delimiter": "\n!?。;!?", "layout_recognize": True})
doc = {
"docnm_kwd": filename,
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
@@ -69,15 +71,18 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
for txt in laws.Docx()(filename, binary):
sections.append((txt, ""))
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
pdf_parser = Pdf() if parser_config["layout_recognize"] else PlainParser()
sections, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
res = tokenize_table(tbls, doc, eng)
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = ExcelParser()
sections = [(excel_parser.html(binary), "")]
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
@@ -92,26 +97,13 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
sections = txt.split("\n")
sections = [(l, "") for l in sections if l]
callback(0.8, "Finish parsing.")
else:
raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
parser_config = kwargs.get("parser_config", {"chunk_token_num": 128, "delimiter": "\n!?。;!?"})
cks = naive_merge(sections, parser_config.get("chunk_token_num", 128), parser_config.get("delimiter", "\n!?。;!?"))
# wrap up to es documents
for ck in cks:
if len(ck.strip()) == 0:continue
print("--", ck)
d = copy.deepcopy(doc)
if pdf_parser:
try:
d["image"], poss = pdf_parser.crop(ck, need_position=True)
except Exception as e:
continue
add_positions(d, poss)
ck = pdf_parser.remove_tag(ck)
tokenize(d, ck, eng)
res.append(d)
chunks = naive_merge(sections, parser_config.get("chunk_token_num", 128), parser_config.get("delimiter", "\n!?。;!?"))
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
return res

+ 10
- 6
rag/app/one.py 파일 보기

@@ -13,7 +13,7 @@
import re
from rag.app import laws
from rag.nlp import huqie, tokenize
from deepdoc.parser import PdfParser, ExcelParser
from deepdoc.parser import PdfParser, ExcelParser, PlainParser
class Pdf(PdfParser):
@@ -45,7 +45,7 @@ class Pdf(PdfParser):
for (img, rows), poss in tbls:
sections.append((rows if isinstance(rows, str) else rows[0],
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
return [txt for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))]
return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))]
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
@@ -59,16 +59,19 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
sections = []
if re.search(r"\.docx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
for txt in laws.Docx()(filename, binary):
sections.append(txt)
sections = [txt for txt in laws.Docx()(filename, binary) if txt]
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser()
sections = pdf_parser(filename if not binary else binary, to_page=to_page, callback=callback)
sections = [s for s, _ in sections if s]
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = ExcelParser()
sections = [excel_parser.html(binary)]
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
@@ -81,8 +84,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
if not l: break
txt += l
sections = txt.split("\n")
sections = [(l, "") for l in sections if l]
sections = [s for s in sections if s]
callback(0.8, "Finish parsing.")
else:
raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")

+ 18
- 32
rag/app/paper.py 파일 보기

@@ -15,8 +15,8 @@ import re
from collections import Counter
from api.db import ParserType
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
from deepdoc.parser import PdfParser
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
from deepdoc.parser import PdfParser, PlainParser
import numpy as np
from rag.utils import num_tokens_from_string
@@ -59,24 +59,6 @@ class Pdf(PdfParser):
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
for b in self.boxes:
b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
# freq = Counter([b["text"] for b in self.boxes])
# garbage = set([k for k, v in freq.items() if v > self.total_page * 0.6])
# i = 0
# while i < len(self.boxes):
# if self.boxes[i]["text"] in garbage \
# or (re.match(r"[a-zA-Z0-9]+$", self.boxes[i]["text"]) and not self.boxes[i].get("layoutno")) \
# or (i + 1 < len(self.boxes) and self.boxes[i]["text"] == self.boxes[i + 1]["text"]):
# self.boxes.pop(i)
# elif i + 1 < len(self.boxes) and self.boxes[i].get("layoutno", '0') == self.boxes[i + 1].get("layoutno",
# '1'):
# # merge within same layouts
# self.boxes[i + 1]["top"] = self.boxes[i]["top"]
# self.boxes[i + 1]["x0"] = min(self.boxes[i]["x0"], self.boxes[i + 1]["x0"])
# self.boxes[i + 1]["x1"] = max(self.boxes[i]["x1"], self.boxes[i + 1]["x1"])
# self.boxes[i + 1]["text"] = self.boxes[i]["text"] + " " + self.boxes[i + 1]["text"]
# self.boxes.pop(i)
# else:
# i += 1
def _begin(txt):
return re.match(
@@ -148,9 +130,19 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
"""
pdf_parser = None
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
if not kwargs.get("parser_config",{}).get("layout_recognize", True):
pdf_parser = PlainParser()
paper = {
"title": filename,
"authors": " ",
"abstract": "",
"sections": pdf_parser(filename if not binary else binary),
"tables": []
}
else:
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else: raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {"docnm_kwd": filename, "authors_tks": huqie.qie(paper["authors"]),
@@ -195,16 +187,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
continue
chunks.append(txt)
last_sid = sec_id
for txt in chunks:
d = copy.deepcopy(doc)
d["image"], poss = pdf_parser.crop(txt, need_position=True)
add_positions(d, poss)
tokenize(d, pdf_parser.remove_tag(txt), eng)
res.append(d)
print("----------------------\n", pdf_parser.remove_tag(txt))
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
return res
"""
readed = [0] * len(paper["lines"])
# find colon firstly
i = 0
@@ -280,7 +266,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
print(d)
# d["image"].save(f"./logs/{i}.jpg")
return res
"""
if __name__ == "__main__":
import sys

+ 16
- 18
rag/app/presentation.py 파일 보기

@@ -18,7 +18,8 @@ from PIL import Image
from rag.nlp import tokenize, is_english
from rag.nlp import huqie
from deepdoc.parser import PdfParser, PptParser
from deepdoc.parser import PdfParser, PptParser, PlainParser
from PyPDF2 import PdfReader as pdf2_read
class Ppt(PptParser):
@@ -56,19 +57,6 @@ class Pdf(PdfParser):
callback(0.8, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)))
assert len(self.boxes) == len(self.page_images), "{} vs. {}".format(len(self.boxes), len(self.page_images))
res = []
#################### More precisely ###################
# self._layouts_rec(zoomin)
# self._text_merge()
# pages = {}
# for b in self.boxes:
# if self.__garbage(b["text"]):continue
# if b["page_number"] not in pages: pages[b["page_number"]] = []
# pages[b["page_number"]].append(b["text"])
# for i, lines in pages.items():
# res.append(("\n".join(lines), self.page_images[i-1]))
# return res
########################################
for i in range(len(self.boxes)):
lines = "\n".join([b["text"] for b in self.boxes[i] if not self.__garbage(b["text"])])
res.append((lines, self.page_images[i]))
@@ -76,6 +64,16 @@ class Pdf(PdfParser):
return res
class PlainPdf(PlainParser):
def __call__(self, filename, binary=None, callback=None, **kwargs):
self.pdf = pdf2_read(filename if not binary else BytesIO(filename))
page_txt = []
for page in self.pdf.pages:
page_txt.append(page.extract_text())
callback(0.9, "Parsing finished")
return [(txt, None) for txt in page_txt]
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
"""
The supported file formats are pdf, pptx.
@@ -102,14 +100,14 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
res.append(d)
return res
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
for pn, (txt,img) in enumerate(pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback)):
pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainPdf()
for pn, (txt,img) in enumerate(pdf_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)):
d = copy.deepcopy(doc)
pn += from_page
d["image"] = img
if img: d["image"] = img
d["page_num_int"] = [pn+1]
d["top_int"] = [0]
d["position_int"] = [(pn + 1, 0, img.size[0], 0, img.size[1])]
d["position_int"] = [(pn + 1, 0, img.size[0] if img else 0, 0, img.size[1] if img else 0)]
tokenize(d, txt, eng)
res.append(d)
return res

+ 19
- 0
rag/nlp/__init__.py 파일 보기

@@ -76,6 +76,25 @@ def tokenize(d, t, eng):
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
def tokenize_chunks(chunks, doc, eng, pdf_parser):
res = []
# wrap up as es documents
for ck in chunks:
if len(ck.strip()) == 0:continue
print("--", ck)
d = copy.deepcopy(doc)
if pdf_parser:
try:
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
ck = pdf_parser.remove_tag(ck)
except NotImplementedError as e:
pass
tokenize(d, ck, eng)
res.append(d)
return res
def tokenize_table(tbls, doc, eng, batch_size=10):
res = []
# add tables

+ 5
- 1
rag/nlp/huqie.py 파일 보기

@@ -300,7 +300,11 @@ class Huqie:
def qieqie(self, tks):
tks = tks.split(" ")
zh_num = len([1 for c in tks if c and is_chinese(c[0])])
if zh_num < len(tks) * 0.2:return " ".join(tks)
if zh_num < len(tks) * 0.2:
res = []
for tk in tks:
res.extend(tk.split("/"))
return " ".join(res)

res = []
for tk in tks:

+ 4
- 3
rag/nlp/search.py 파일 보기

@@ -68,6 +68,7 @@ class Dealer:
s = Search()
pg = int(req.get("page", 1)) - 1
ps = int(req.get("size", 1000))
topk = int(req.get("topk", 1024))
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
"image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int",
"q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
@@ -103,7 +104,7 @@ class Dealer:
assert emb_mdl, "No embedding model selected"
s["knn"] = self._vector(
qst, emb_mdl, req.get(
"similarity", 0.1), ps)
"similarity", 0.1), topk)
s["knn"]["filter"] = bqry.to_dict()
if "highlight" in s:
del s["highlight"]
@@ -292,8 +293,8 @@ class Dealer:
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
if not question:
return ranks
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": page_size,
"question": question, "vector": True, "topk": top,
"similarity": similarity_threshold}
sres = self.search(req, index_name(tenant_id), embd_mdl)


+ 7
- 3
rag/svr/task_broker.py 파일 보기

@@ -81,11 +81,15 @@ def dispatch():
tsks = []
if r["type"] == FileType.PDF.value:
if not r["parser_config"].get("layout_recognize", True):
tsks.append(new_task())
continue
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
page_size = 12
if r["parser_id"] == "paper": page_size = 22
page_size = r["parser_config"].get("task_page_size", 12)
if r["parser_id"] == "paper": page_size = r["parser_config"].get("task_page_size", 22)
if r["parser_id"] == "one": page_size = 1000000000
for s,e in r["parser_config"].get("pages", [(0,100000)]):
for s,e in r["parser_config"].get("pages", [(1, 100000)]):
s -= 1
e = min(e, pages)
for p in range(s, e, page_size):
task = new_task()

Loading…
취소
저장