|
|
|
@@ -75,10 +75,11 @@ def build_knowlege_graph_chunks(tenant_id: str, chunks: List[str], callback, ent |
|
|
|
llm_bdl = LLMBundle(tenant_id, LLMType.CHAT, tenant.llm_id) |
|
|
|
ext = GraphExtractor(llm_bdl) |
|
|
|
left_token_count = llm_bdl.max_length - ext.prompt_token_count - 1024 |
|
|
|
left_token_count = max(llm_bdl.max_length * 0.8, left_token_count) |
|
|
|
left_token_count = max(llm_bdl.max_length * 0.6, left_token_count) |
|
|
|
|
|
|
|
assert left_token_count > 0, f"The LLM context length({llm_bdl.max_length}) is smaller than prompt({ext.prompt_token_count})" |
|
|
|
|
|
|
|
BATCH_SIZE=1 |
|
|
|
texts, graphs = [], [] |
|
|
|
cnt = 0 |
|
|
|
threads = [] |
|
|
|
@@ -86,15 +87,15 @@ def build_knowlege_graph_chunks(tenant_id: str, chunks: List[str], callback, ent |
|
|
|
for i in range(len(chunks)): |
|
|
|
tkn_cnt = num_tokens_from_string(chunks[i]) |
|
|
|
if cnt+tkn_cnt >= left_token_count and texts: |
|
|
|
for b in range(0, len(texts), 16): |
|
|
|
threads.append(exe.submit(ext, ["\n".join(texts[b:b+16])], {"entity_types": entity_types}, callback)) |
|
|
|
for b in range(0, len(texts), BATCH_SIZE): |
|
|
|
threads.append(exe.submit(ext, ["\n".join(texts[b:b+BATCH_SIZE])], {"entity_types": entity_types}, callback)) |
|
|
|
texts = [] |
|
|
|
cnt = 0 |
|
|
|
texts.append(chunks[i]) |
|
|
|
cnt += tkn_cnt |
|
|
|
if texts: |
|
|
|
for b in range(0, len(texts), 16): |
|
|
|
threads.append(exe.submit(ext, ["\n".join(texts[b:b+16])], {"entity_types": entity_types}, callback)) |
|
|
|
for b in range(0, len(texts), BATCH_SIZE): |
|
|
|
threads.append(exe.submit(ext, ["\n".join(texts[b:b+BATCH_SIZE])], {"entity_types": entity_types}, callback)) |
|
|
|
|
|
|
|
callback(0.5, "Extracting entities.") |
|
|
|
graphs = [] |