Browse Source

Refactor Chunk API (#2855)

### What problem does this PR solve?

Refactor Chunk API
#2846
### Type of change


- [x] Refactoring

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
tags/v0.13.0
liuhua 1 year ago
parent
commit
dab92ac1e8
No account linked to committer's email address

+ 95
- 76
api/apps/sdk/doc.py View File

if informs: if informs:
e, file = FileService.get_by_id(informs[0].file_id) e, file = FileService.get_by_id(informs[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]}) FileService.update_by_id(file.id, {"name": req["name"]})
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if "parser_method" in req: if "parser_method" in req:
if doc.parser_id.lower() == req["parser_method"].lower(): if doc.parser_id.lower() == req["parser_method"].lower():
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
return get_result(retcode=RetCode.SUCCESS)
else:
return get_result(retcode=RetCode.SUCCESS)
return get_result()


if doc.type == FileType.VISUAL or re.search( if doc.type == FileType.VISUAL or re.search(
r"\.(ppt|pptx|pages)$", doc.name): r"\.(ppt|pptx|pages)$", doc.name):
return get_error_data_result(retmsg="Tenant not found!") return get_error_data_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery( ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id)) Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])


return get_result() return get_result()


if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
req = request.json req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]: for id in req["document_ids"]:
if not DocumentService.query(id=id,kb_id=dataset_id): if not DocumentService.query(id=id,kb_id=dataset_id):
return get_error_data_result(retmsg=f"You don't own the document {id}.") return get_error_data_result(retmsg=f"You don't own the document {id}.")
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
req = request.json req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]: for id in req["document_ids"]:
if not DocumentService.query(id=id,kb_id=dataset_id):
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {id}.") return get_error_data_result(retmsg=f"You don't own the document {id}.")
if doc[0].progress == 100.0 or doc[0].progress == 0.0:
return get_error_data_result("Can't stop parsing document with progress at 0 or 100")
info = {"run": "2", "progress": 0} info = {"run": "2", "progress": 0}
DocumentService.update_by_id(id, info) DocumentService.update_by_id(id, info)
# if str(req["run"]) == TaskStatus.CANCEL.value: # if str(req["run"]) == TaskStatus.CANCEL.value:


@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['GET']) @manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['GET'])
@token_required @token_required
def list_chunk(tenant_id,dataset_id,document_id):
def list_chunks(tenant_id,dataset_id,document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc=DocumentService.query(id=document_id, kb_id=dataset_id) doc=DocumentService.query(id=document_id, kb_id=dataset_id)
page = int(req.get("offset", 1)) page = int(req.get("offset", 1))
size = int(req.get("limit", 30)) size = int(req.get("limit", 30))
question = req.get("keywords", "") question = req.get("keywords", "")
try:
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
origin_chunks = []
sign = 0
for id in sres.ids:
d = {
"chunk_id": id,
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
id].get(
"content_with_weight", ""),
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
"positions": sres.field[id].get("position_int", "").split("\t")
} }
if "available_int" in req:
query["available_int"] = int(req["available_int"])
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}

origin_chunks = []
for id in sres.ids:
d = {
"chunk_id": id,
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
id].get(
"content_with_weight", ""),
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
"positions": sres.field[id].get("position_int", "").split("\t")
}
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss

origin_chunks.append(d)
##rename keys
for chunk in origin_chunks:
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"img_id": "image_id",
}
renamed_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
res["chunks"].append(renamed_chunk)
return get_result(data=res)
except Exception as e:
if str(e).find("not_found") > 0:
return get_result(retmsg=f'No chunk found!',
retcode=RetCode.DATA_ERROR)
return server_error_response(e)
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss

origin_chunks.append(d)
if req.get("id"):
if req.get("id") == id:
origin_chunks.clear()
origin_chunks.append(d)
sign = 1
break
if req.get("id"):
if sign == 0:
return get_error_data_result(f"Can't find this chunk {req.get('id')}")
for chunk in origin_chunks:
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"img_id": "image_id",
}
renamed_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
res["chunks"].append(renamed_chunk)
return get_result(data=res)





@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['POST']) @manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['POST'])
req = request.json req = request.json
if not req.get("content"): if not req.get("content"):
return get_error_data_result(retmsg="`content` is required") return get_error_data_result(retmsg="`content` is required")
if "important_keywords" in req:
if type(req["important_keywords"]) != list:
return get_error_data_result("`important_keywords` is required to be a list")
md5 = hashlib.md5() md5 = hashlib.md5()
md5.update((req["content"] + document_id).encode("utf-8")) md5.update((req["content"] + document_id).encode("utf-8"))


d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]), d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]),
"content_with_weight": req["content"]} "content_with_weight": req["content"]}
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req.get("important_kwd", [])
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
d["important_kwd"] = req.get("important_keywords", [])
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_keywords", [])))
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp() d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
d["kb_id"] = [doc.kb_id] d["kb_id"] = [doc.kb_id]
req = request.json req = request.json
if not req.get("chunk_ids"): if not req.get("chunk_ids"):
return get_error_data_result("`chunk_ids` is required") return get_error_data_result("`chunk_ids` is required")
query = {
"doc_ids": [doc.id], "page": 1, "size": 1024, "question": "", "sort": True}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
for chunk_id in req.get("chunk_ids"): for chunk_id in req.get("chunk_ids"):
res = ELASTICSEARCH.get(
chunk_id, search.index_name(
tenant_id))
if not res.get("found"):
return server_error_response(f"Chunk {chunk_id} not found")
if chunk_id not in sres.ids:
return get_error_data_result(f"Chunk {chunk_id} not found")
if not ELASTICSEARCH.deleteByQuery( if not ELASTICSEARCH.deleteByQuery(
Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)): Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)):
return get_error_data_result(retmsg="Index updating failure") return get_error_data_result(retmsg="Index updating failure")
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk/<chunk_id>', methods=['PUT']) @manager.route('/dataset/<dataset_id>/document/<document_id>/chunk/<chunk_id>', methods=['PUT'])
@token_required @token_required
def set(tenant_id,dataset_id,document_id,chunk_id): def set(tenant_id,dataset_id,document_id,chunk_id):
res = ELASTICSEARCH.get(
try:
res = ELASTICSEARCH.get(
chunk_id, search.index_name( chunk_id, search.index_name(
tenant_id)) tenant_id))
if not res.get("found"):
return get_error_data_result(f"Chunk {chunk_id} not found")
except Exception as e:
return get_error_data_result(f"Can't find this chunk {chunk_id}")
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id) doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc: if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.") return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc = doc[0]
query = {
"doc_ids": [document_id], "page": 1, "size": 1024, "question": "", "sort": True
}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
if chunk_id not in sres.ids:
return get_error_data_result(f"You don't own the chunk {chunk_id}")
req = request.json req = request.json
content=res["_source"].get("content_with_weight")
d = { d = {
"id": chunk_id, "id": chunk_id,
"content_with_weight": req.get("content",res.get["content_with_weight"])}
d["content_ltks"] = rag_tokenizer.tokenize(req["content"])
"content_with_weight": req.get("content",content)}
d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req.get("important_keywords",[])
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
if "important_keywords" in req:
if type(req["important_keywords"]) != list:
return get_error_data_result("`important_keywords` is required to be a list")
d["important_kwd"] = req.get("important_keywords")
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
if "available" in req: if "available" in req:
d["available_int"] = req["available"] d["available_int"] = req["available"]
embd_id = DocumentService.get_embd_id(document_id) embd_id = DocumentService.get_embd_id(document_id)
arr = [ arr = [
t for t in re.split( t for t in re.split(
r"[\n\t]", r"[\n\t]",
req["content"]) if len(t) > 1]
d["content_with_weight"]) if len(t) > 1]
if len(arr) != 2: if len(arr) != 2:
return get_error_data_result( return get_error_data_result(
retmsg="Q&A must be separated by TAB/ENTER key.") retmsg="Q&A must be separated by TAB/ENTER key.")
d = beAdoc(d, arr[0], arr[1], not any( d = beAdoc(d, arr[0], arr[1], not any(
[rag_tokenizer.is_chinese(t) for t in q + a])) [rag_tokenizer.is_chinese(t) for t in q + a]))


v, c = embd_mdl.encode([doc.name, req["content"]])
v, c = embd_mdl.encode([doc.name, d["content_with_weight"]])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1] v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist() d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id)) ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
for id in kb_id: for id in kb_id:
if not KnowledgebaseService.query(id=id,tenant_id=tenant_id): if not KnowledgebaseService.query(id=id,tenant_id=tenant_id):
return get_error_data_result(f"You don't own the dataset {id}.") return get_error_data_result(f"You don't own the dataset {id}.")
if "question" not in req_json:
if "question" not in req:
return get_error_data_result("`question` is required.") return get_error_data_result("`question` is required.")
page = int(req.get("offset", 1)) page = int(req.get("offset", 1))
size = int(req.get("limit", 30)) size = int(req.get("limit", 30))

+ 28
- 17
api/apps/sdk/session.py View File

from api.utils.api_utils import get_error_data_result from api.utils.api_utils import get_error_data_result
from api.utils.api_utils import get_result, token_required from api.utils.api_utils import get_result, token_required
@manager.route('/chat/<chat_id>/session', methods=['POST']) @manager.route('/chat/<chat_id>/session', methods=['POST'])
@token_required @token_required
def create(tenant_id, chat_id):
def create(tenant_id,chat_id):
req = request.json req = request.json
req["dialog_id"] = chat_id req["dialog_id"] = chat_id
dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value) dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
del conv["reference"] del conv["reference"]
return get_result(data=conv) return get_result(data=conv)
@manager.route('/chat/<chat_id>/session/<session_id>', methods=['PUT']) @manager.route('/chat/<chat_id>/session/<session_id>', methods=['PUT'])
@token_required @token_required
def update(tenant_id, chat_id, session_id):
def update(tenant_id,chat_id,session_id):
req = request.json req = request.json
req["dialog_id"] = chat_id req["dialog_id"] = chat_id
conv_id = session_id conv_id = session_id
conv = ConversationService.query(id=conv_id, dialog_id=chat_id)
conv = ConversationService.query(id=conv_id,dialog_id=chat_id)
if not conv: if not conv:
return get_error_data_result(retmsg="Session does not exist") return get_error_data_result(retmsg="Session does not exist")
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value): if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_result() return get_result()
@manager.route('/chat/<chat_id>/session/<session_id>/completion', methods=['POST'])
@manager.route('/chat/<chat_id>/completion', methods=['POST'])
@token_required @token_required
def completion(tenant_id, chat_id, session_id):
def completion(tenant_id,chat_id):
req = request.json req = request.json
# req = {"conversation_id": "9aaaca4c11d311efa461fa163e197198", "messages": [ # req = {"conversation_id": "9aaaca4c11d311efa461fa163e197198", "messages": [
# {"role": "user", "content": "上海有吗?"} # {"role": "user", "content": "上海有吗?"}
# ]} # ]}
if not req.get("session_id"):
conv = {
"id": get_uuid(),
"dialog_id": chat_id,
"name": req.get("name", "New session"),
"message": [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
}
if not conv.get("name"):
return get_error_data_result(retmsg="Name can not be empty.")
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
session_id=conv.id
else:
session_id = req.get("session_id")
if not req.get("question"): if not req.get("question"):
return get_error_data_result(retmsg="Please input your question.") return get_error_data_result(retmsg="Please input your question.")
conv = ConversationService.query(id=session_id, dialog_id=chat_id)
conv = ConversationService.query(id=session_id,dialog_id=chat_id)
if not conv: if not conv:
return get_error_data_result(retmsg="Session does not exist") return get_error_data_result(retmsg="Session does not exist")
conv = conv[0] conv = conv[0]
conv.message[-1] = {"role": "assistant", "content": ans["answer"], conv.message[-1] = {"role": "assistant", "content": ans["answer"],
"id": message_id, "prompt": ans.get("prompt", "")} "id": message_id, "prompt": ans.get("prompt", "")}
ans["id"] = message_id ans["id"] = message_id
ans["session_id"]=session_id
def stream(): def stream():
nonlocal dia, msg, req, conv nonlocal dia, msg, req, conv
try: try:
for ans in chat(dia, msg, **req): for ans in chat(dia, msg, **req):
fillin_conv(ans) fillin_conv(ans)
yield "data:" + json.dumps({"code": 0, "data": ans}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "data": ans}, ensure_ascii=False) + "\n\n"
ConversationService.update_by_id(conv.id, conv.to_dict()) ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e: except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e), yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
"data": {"answer": "**ERROR**: " + str(e),"reference": []}},
ensure_ascii=False) + "\n\n" ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "data": True}, ensure_ascii=False) + "\n\n" yield "data:" + json.dumps({"code": 0, "data": True}, ensure_ascii=False) + "\n\n"
break break
return get_result(data=answer) return get_result(data=answer)
@manager.route('/chat/<chat_id>/session', methods=['GET']) @manager.route('/chat/<chat_id>/session', methods=['GET'])
@token_required @token_required
def list(chat_id, tenant_id):
def list(chat_id,tenant_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value): if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg=f"You don't own the assistant {chat_id}.") return get_error_data_result(retmsg=f"You don't own the assistant {chat_id}.")
id = request.args.get("id") id = request.args.get("id")
name = request.args.get("name") name = request.args.get("name")
session = ConversationService.query(id=id, name=name, dialog_id=chat_id)
session = ConversationService.query(id=id,name=name,dialog_id=chat_id)
if not session: if not session:
return get_error_data_result(retmsg="The session doesn't exist") return get_error_data_result(retmsg="The session doesn't exist")
page_number = int(request.args.get("page", 1)) page_number = int(request.args.get("page", 1))
desc = False desc = False
else: else:
desc = True desc = True
convs = ConversationService.get_list(chat_id, page_number, items_per_page, orderby, desc, id, name)
convs = ConversationService.get_list(chat_id,page_number,items_per_page,orderby,desc,id,name)
if not convs: if not convs:
return get_result(data=[]) return get_result(data=[])
for conv in convs: for conv in convs:
del conv["reference"] del conv["reference"]
return get_result(data=convs) return get_result(data=convs)
@manager.route('/chat/<chat_id>/session', methods=["DELETE"]) @manager.route('/chat/<chat_id>/session', methods=["DELETE"])
@token_required @token_required
def delete(tenant_id, chat_id):
def delete(tenant_id,chat_id):
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value): if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(retmsg="You don't own the chat") return get_error_data_result(retmsg="You don't own the chat")
ids = request.json.get("ids") ids = request.json.get("ids")
if not ids: if not ids:
return get_error_data_result(retmsg="`ids` is required in deleting operation") return get_error_data_result(retmsg="`ids` is required in deleting operation")
for id in ids: for id in ids:
conv = ConversationService.query(id=id, dialog_id=chat_id)
conv = ConversationService.query(id=id,dialog_id=chat_id)
if not conv: if not conv:
return get_error_data_result(retmsg="The chat doesn't own the session") return get_error_data_result(retmsg="The chat doesn't own the session")
ConversationService.delete_by_id(id) ConversationService.delete_by_id(id)

+ 1
- 2
api/db/services/document_service.py View File

docs = docs.where( docs = docs.where(
fn.LOWER(cls.model.name).contains(keywords.lower()) fn.LOWER(cls.model.name).contains(keywords.lower())
) )
count = docs.count()
if desc: if desc:
docs = docs.order_by(cls.model.getter_by(orderby).desc()) docs = docs.order_by(cls.model.getter_by(orderby).desc())
else: else:
docs = docs.order_by(cls.model.getter_by(orderby).asc()) docs = docs.order_by(cls.model.getter_by(orderby).asc())


docs = docs.paginate(page_number, items_per_page) docs = docs.paginate(page_number, items_per_page)
count = docs.count()
return list(docs.dicts()), count return list(docs.dicts()), count





+ 372
- 198
api/http_api.md View File

} }
``` ```


## Delete files from a dataset

**DELETE** `/api/v1/dataset/{dataset_id}/document `

Delete files from a dataset

### Request

- Method: DELETE
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document`
- Headers:
- 'Content-Type: application/json'
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
- `ids`:List[str]
#### Request example

```bash
curl --request DELETE \
--url http://{address}/api/v1/dataset/{dataset_id}/document \
--header 'Content-Type: application/json' \
--header 'Authorization: {YOUR ACCESS TOKEN}' \
--data '{
"ids": ["id_1","id_2"]
}'
```

#### Request parameters

- `"ids"`: (*Body parameter*)
The ids of teh documents to be deleted
### Response

The successful response includes a JSON object like the following:

```json
{
"code": 0
}.
```

- `"error_code"`: `integer`
`0`: The operation succeeds.

The error response includes a JSON object like the following:

```json
{
"code": 102,
"message": "You do not own the dataset 7898da028a0511efbf750242ac1220005."
}
```

## Download a file from a dataset ## Download a file from a dataset


**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}` **GET** `/api/v1/dataset/{dataset_id}/document/{document_id}`


Downloads files from a dataset.
Downloads a file from a dataset.


### Request ### Request


- Method: GET - Method: GET
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}`
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}`
- Headers: - Headers:
- `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Output: - Output:
- '{FILE_NAME}' - '{FILE_NAME}'


```bash ```bash
curl --request GET \ curl --request GET \
--url http://{address}/api/v1/dataset/{dataset_id}/document/{documents_id} \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
--output '{FILE_NAME}'
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id} \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
--output ./ragflow.txt
``` ```


#### Request parameters #### Request parameters


### Response ### Response


The successful response includes a JSON object like the following:
The successful response includes a text object like the following:


```text ```text
test_2. test_2.
- Headers: - Headers:
- `content-Type: application/json` - `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

- Body:
- `name`:`string`
- `parser_method`:`string`
- `parser_config`:`dict`
#### Request example #### Request example


```bash ```bash
curl --request PUT \ curl --request PUT \
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id} \
--url http://{address}/api/v1/dataset/{dataset_id}/info/{document_id} \
--header 'Authorization: Bearer {YOUR_ACCESS TOKEN}' \ --header 'Authorization: Bearer {YOUR_ACCESS TOKEN}' \
--header 'Content-Type: application/json' \ --header 'Content-Type: application/json' \
--data '{ --data '{
"name": "manual.txt", "name": "manual.txt",
"thumbnail": null,
"knowledgebase_id": "779333c0758611ef910f0242ac120004",
"parser_method": "manual", "parser_method": "manual",
"parser_config": {"chunk_token_count": 128, "delimiter": "\n!?。;!?", "layout_recognize": true, "task_page_size": 12},
"source_type": "local", "type": "doc",
"created_by": "134408906b6811efbcd20242ac120005",
"size": 0, "token_count": 0, "chunk_count": 0,
"progress": 0.0,
"progress_msg": "",
"process_begin_at": null,
"process_duration": 0.0
"parser_config": {"chunk_token_count": 128, "delimiter": "\n!?。;!?", "layout_recognize": true, "task_page_size": 12}
}' }'


``` ```


#### Request parameters #### Request parameters


- `"thumbnail"`: (*Body parameter*)
Thumbnail image of the document.
- `""`

- `"knowledgebase_id"`: (*Body parameter*)
Knowledge base ID related to the document.
- `""`

- `"parser_method"`: (*Body parameter*) - `"parser_method"`: (*Body parameter*)
Method used to parse the document. Method used to parse the document.
- `""`



- `"parser_config"`: (*Body parameter*) - `"parser_config"`: (*Body parameter*)
Configuration object for the parser. Configuration object for the parser.
- If the value is `None`, a dictionary with default values will be generated. - If the value is `None`, a dictionary with default values will be generated.


- `"source_type"`: (*Body parameter*)
Source type of the document.
- `""`

- `"type"`: (*Body parameter*)
Type or category of the document.
- `""`

- `"created_by"`: (*Body parameter*)
Creator of the document.
- `""`

- `"name"`: (*Body parameter*) - `"name"`: (*Body parameter*)
Name or title of the document. Name or title of the document.
- `""`

- `"size"`: (*Body parameter*)
Size of the document in bytes or some other unit.
- `0`

- `"token_count"`: (*Body parameter*)
Number of tokens in the document.
- `0`

- `"chunk_count"`: (*Body parameter*)
Number of chunks the document is split into.
- `0`


- `"progress"`: (*Body parameter*)
Current processing progress as a percentage.
- `0.0`


- `"progress_msg"`: (*Body parameter*)
Message indicating current progress status.
- `""`

- `"process_begin_at"`: (*Body parameter*)
Start time of the document processing.
- `None`

- `"process_duration"`: (*Body parameter*)
Duration of the processing in seconds or minutes.
- `0.0`




### Response ### Response
### Request ### Request


- Method: POST - Method: POST
- URL: `/api/v1/dataset/{dataset_id}/chunk`
- URL: `http://{address}/api/v1/dataset/{dataset_id}/chunk `
- Headers: - Headers:
- `content-Type: application/json` - `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
- `document_ids`:List[str]


#### Request example #### Request example


```shell
```bash
curl --request POST \ curl --request POST \
--url http://{address}/api/v1/dataset/{dataset_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
--raw '{
"documents": ["f6b170ac758811efa0660242ac120004", "97ad64b6759811ef9fc30242ac120004"]
}'
--url http://{address}/api/v1/dataset/{dataset_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
--data '{"document_ids": ["97a5f1c2759811efaa500242ac120004","97ad64b6759811ef9fc30242ac120004"]}'
``` ```


#### Request parameters #### Request parameters


- `"dataset_id"`: (*Path parameter*) - `"dataset_id"`: (*Path parameter*)
- `"documents"`: (*Body parameter*)
- Documents to parse
- `"document_ids"`:(*Body parameter*)
The ids of the documents to be parsed


### Response ### Response


The successful response includes a JSON object like the following: The successful response includes a JSON object like the following:


```shell
```json
{ {
"code": 0 "code": 0
} }
The error response includes a JSON object like the following: The error response includes a JSON object like the following:


```shell
```json
{ {
"code": 3016,
"message": "Can't connect database"
"code": 102,
"message": "`document_ids` is required"
} }
``` ```




### Request ### Request


- Method: POST
- URL: `/api/v1/dataset/{dataset_id}/chunk`
- Method: DELETE
- URL: `http://{address}/api/v1/dataset/{dataset_id}/chunk`
- Headers: - Headers:
- `content-Type: application/json` - `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

- Body:
- `document_ids`:List[str]
#### Request example #### Request example


```shell
```bash
curl --request DELETE \ curl --request DELETE \
--url http://{address}/api/v1/dataset/{dataset_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
--raw '{
"documents": ["f6b170ac758811efa0660242ac120004", "97ad64b6759811ef9fc30242ac120004"]
}'
--url http://{address}/api/v1/dataset/{dataset_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
--data '{"document_ids": ["97a5f1c2759811efaa500242ac120004","97ad64b6759811ef9fc30242ac120004"]}'
``` ```


#### Request parameters #### Request parameters


- `"dataset_id"`: (*Path parameter*) - `"dataset_id"`: (*Path parameter*)
- `"documents"`: (*Body parameter*)
- Documents to stop parsing
- `"document_ids"`:(*Body parameter*)
The ids of the documents to be parsed



### Response ### Response


The successful response includes a JSON object like the following: The successful response includes a JSON object like the following:


```shell
```json
{ {
"code": 0 "code": 0
} }
The error response includes a JSON object like the following: The error response includes a JSON object like the following:


```shell
```json
{ {
"code": 3016,
"message": "Can't connect database"
"code": 102,
"message": "`document_ids` is required"
} }
``` ```


## Get document chunk list ## Get document chunk list


**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk?keywords={keywords}&offset={offset}&limit={limit}&id={id}`


Get document chunk list Get document chunk list


### Request ### Request


- Method: GET - Method: GET
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk?keywords={keywords}&offset={offset}&limit={limit}&id={id}`
- Headers: - Headers:
- `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'


#### Request example #### Request example


```shell
```bash
curl --request GET \ curl --request GET \
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk?keywords={keywords}&offset={offset}&limit={limit}&id={id} \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
``` ```


#### Request parameters #### Request parameters


- `"dataset_id"`: (*Path parameter*) - `"dataset_id"`: (*Path parameter*)
- `"document_id"`: (*Path parameter*) - `"document_id"`: (*Path parameter*)

- `"offset"`(*Filter parameter*)
The beginning number of records for paging.
- `"keywords"`(*Filter parameter*)
List chunks whose name has the given keywords
- `"limit"`(*Filter parameter*)
Records number to return
- `"id"`(*Filter parameter*)
The id of chunk to be got
### Response ### Response


The successful response includes a JSON object like the following: The successful response includes a JSON object like the following:


```shell
```json
{ {
"code": 0
"code": 0,
"data": { "data": {
"chunks": [
{
"available_int": 1,
"content": "<em>advantag</em>of ragflow increas accuraci and relev:by incorpor retriev inform , ragflow can gener respons that are more accur",
"document_keyword": "ragflow_test.txt",
"document_id": "77df9ef4759a11ef8bdd0242ac120004",
"id": "4ab8c77cfac1a829c8d5ed022a0808c0",
"image_id": "",
"important_keywords": [],
"positions": [
""
]
}
],
"chunks": [],
"doc": { "doc": {
"chunk_count": 5,
"create_date": "Wed, 18 Sep 2024 08:46:16 GMT",
"create_time": 1726649176833,
"created_by": "134408906b6811efbcd20242ac120005",
"id": "77df9ef4759a11ef8bdd0242ac120004",
"knowledgebase_id": "77d9d24e759a11ef880c0242ac120004",
"location": "ragflow_test.txt",
"name": "ragflow_test.txt",
"chunk_num": 0,
"create_date": "Sun, 29 Sep 2024 03:47:29 GMT",
"create_time": 1727581649216,
"created_by": "69736c5e723611efb51b0242ac120007",
"id": "8cb781ec7e1511ef98ac0242ac120006",
"kb_id": "c7ee74067a2c11efb21c0242ac120006",
"location": "明天的天气是晴天.txt",
"name": "明天的天气是晴天.txt",
"parser_config": { "parser_config": {
"chunk_token_count": 128,
"delimiter": "\n!?。;!?",
"layout_recognize": true,
"task_page_size": 12
"pages": [
[
1,
1000000
]
]
}, },
"parser_method": "naive",
"process_begin_at": "Wed, 18 Sep 2024 08:46:16 GMT",
"process_duation": 7.3213,
"progress": 1.0,
"progress_msg": "\nTask has been received.\nStart to parse.\nFinish parsing.\nFinished slicing files(5). Start to embedding the content.\nFinished embedding(6.16)! Start to build index!\nDone!",
"run": "3",
"size": 4209,
"parser_id": "naive",
"process_begin_at": "Tue, 15 Oct 2024 10:23:51 GMT",
"process_duation": 1435.37,
"progress": 0.0370833,
"progress_msg": "\nTask has been received.",
"run": "1",
"size": 24,
"source_type": "local", "source_type": "local",
"status": "1", "status": "1",
"thumbnail": null, "thumbnail": null,
"token_count": 746,
"token_num": 0,
"type": "doc", "type": "doc",
"update_date": "Wed, 18 Sep 2024 08:46:23 GMT",
"update_time": 1726649183321
"update_date": "Tue, 15 Oct 2024 10:47:46 GMT",
"update_time": 1728989266371
}, },
"total": 1
},
"total": 0
}
} }
``` ```
The error response includes a JSON object like the following: The error response includes a JSON object like the following:


```shell
```json
{ {
"code": 3016,
"message": "Can't connect database"
"code": 102,
"message": "You don't own the document 5c5999ec7be811ef9cab0242ac12000e5."
} }
``` ```


### Request ### Request


- Method: DELETE - Method: DELETE
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- Headers: - Headers:
- `content-Type: application/json` - `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
- `chunk_ids`:List[str]


#### Request example #### Request example


```shell
```bash
curl --request DELETE \ curl --request DELETE \
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
--raw '{
"chunks": ["f6b170ac758811efa0660242ac120004", "97ad64b6759811ef9fc30242ac120004"]
}'
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
--data '{
"chunk_ids": ["test_1", "test_2"]
}'
``` ```
#### Request parameters

- `"chunk_ids"`:(*Body parameter*)
The chunks of the document to be deleted

### Response
Success
```json
{
"code": 0
}
```
Error
```json
{
"code": 102,
"message": "`chunk_ids` is required"
}
```



## Update document chunk ## Update document chunk


**PUT** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
**PUT** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk/{chunk_id}`


Update document chunk Update document chunk


### Request ### Request


- Method: PUT - Method: PUT
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk/{chunk_id}`
- Headers: - Headers:
- `content-Type: application/json` - `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

- Body:
- `content`:str
- `important_keywords`:str
- `available`:int
#### Request example #### Request example


```shell
```bash
curl --request PUT \ curl --request PUT \
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
--raw '{
"chunk_id": "d87fb0b7212c15c18d0831677552d7de",
"knowledgebase_id": null,
"name": "",
"content": "ragflow123",
"important_keywords": [],
"document_id": "e6bbba92759511efaa900242ac120004",
"status": "1"
}'
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk/{chunk_id} \
--header 'Content-Type: application/json' \
--header 'Authorization: {YOUR_ACCESS_TOKEN}' \
--data '{
"content": "ragflow123",
"important_keywords": [],
}'
``` ```
#### Request parameters
- `"content"`:(*Body parameter*)
Contains the main text or information of the chunk.
- `"important_keywords"`:(*Body parameter*)
list the key terms or phrases that are significant or central to the chunk's content.
- `"available"`:(*Body parameter*)
Indicating the availability status, 0 means unavailable and 1 means available.


### Response
Success
```json
{
"code": 0
}
```
Error
```json
{
"code": 102,
"message": "Can't find this chunk 29a2d9987e16ba331fb4d7d30d99b71d2"
}
```
## Insert document chunks ## Insert document chunks


**POST** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk` **POST** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
### Request ### Request


- Method: POST - Method: POST
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- Headers: - Headers:
- `content-Type: application/json` - `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

- Body:
- `content`: str
- `important_keywords`:List[str]
#### Request example #### Request example


```shell
```bash
curl --request POST \ curl --request POST \
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
--raw '{
"document_id": "97ad64b6759811ef9fc30242ac120004",
"content": ["ragflow content", "ragflow content"]
}'
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
--data '{
"content": "ragflow content"
}'
``` ```
#### Request parameters
- `content`:(*Body parameter*)
Contains the main text or information of the chunk.
- `important_keywords`(*Body parameter*)
list the key terms or phrases that are significant or central to the chunk's content.


### Response
Success
```json
{
"code": 0,
"data": {
"chunk": {
"content": "ragflow content",
"create_time": "2024-10-16 08:05:04",
"create_timestamp": 1729065904.581025,
"dataset_id": [
"c7ee74067a2c11efb21c0242ac120006"
],
"document_id": "5c5999ec7be811ef9cab0242ac120005",
"id": "d78435d142bd5cf6704da62c778795c5",
"important_keywords": []
}
}
}
```

Error
```json
{
"code": 102,
"message": "`content` is required"
}
```
## Dataset retrieval test ## Dataset retrieval test


**GET** `/api/v1/dataset/{dataset_id}/retrieval`
**GET** `/api/v1/retrieval`


Retrieval test of a dataset Retrieval test of a dataset


### Request ### Request


- Method: GET
- URL: `/api/v1/dataset/{dataset_id}/retrieval`
- Method: POST
- URL: `http://{address}/api/v1/retrieval`
- Headers: - Headers:
- `content-Type: application/json` - `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

- Body:
- `question`: str
- `datasets`: List[str]
- `documents`: List[str]
- `offset`: int
- `limit`: int
- `similarity_threshold`: float
- `vector_similarity_weight`: float
- `top_k`: int
- `rerank_id`: string
- `keyword`: bool
- `highlight`: bool
#### Request example #### Request example


```shell
curl --request GET \
--url http://{address}/api/v1/dataset/{dataset_id}/retrieval \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
--raw '{
"query_text": "This is a cat."
}'
```bash
curl --request POST \
--url http://{address}/api/v1/retrieval \
--header 'Content-Type: application/json' \
--header 'Authorization: {YOUR_ACCESS_TOKEN}' \
--data '{
"question": "What is advantage of ragflow?",
"datasets": [
"b2a62730759d11ef987d0242ac120004"
],
"documents": [
"77df9ef4759a11ef8bdd0242ac120004"
]
}'
``` ```


#### Request parameter
- `"question"`: (*Body parameter*)
User's question, search keywords
`""`
- `"datasets"`: (*Body parameter*)
The scope of datasets
`None`
- `"documents"`: (*Body parameter*)
The scope of document. `None` means no limitation
`None`
- `"offset"`: (*Body parameter*)
The beginning point of retrieved records
`1`

- `"limit"`: (*Body parameter*)
The maximum number of records needed to return
`30`

- `"similarity_threshold"`: (*Body parameter*)
The minimum similarity score
`0.2`

- `"vector_similarity_weight"`: (*Body parameter*)
The weight of vector cosine similarity, `1 - x` is the term similarity weight
`0.3`

- `"top_k"`: (*Body parameter*)
Number of records engaged in vector cosine computation
`1024`

- `"rerank_id"`: (*Body parameter*)
ID of the rerank model
`None`

- `"keyword"`: (*Body parameter*)
Whether keyword-based matching is enabled
`False`

- `"highlight"`: (*Body parameter*)
Whether to enable highlighting of matched terms in the results
`False`
### Response
Success
```json
{
"code": 0,
"data": {
"chunks": [
{
"content": "ragflow content",
"content_ltks": "ragflow content",
"document_id": "5c5999ec7be811ef9cab0242ac120005",
"document_keyword": "1.txt",
"highlight": "<em>ragflow</em> content",
"id": "d78435d142bd5cf6704da62c778795c5",
"img_id": "",
"important_keywords": [
""
],
"kb_id": "c7ee74067a2c11efb21c0242ac120006",
"positions": [
""
],
"similarity": 0.9669436601210759,
"term_similarity": 1.0,
"vector_similarity": 0.8898122004035864
}
],
"doc_aggs": [
{
"count": 1,
"doc_id": "5c5999ec7be811ef9cab0242ac120005",
"doc_name": "1.txt"
}
],
"total": 1
}
}
```
Error
```json
{
"code": 102,
"message": "`datasets` is required."
}
```
## Create chat ## Create chat


**POST** `/api/v1/chat` **POST** `/api/v1/chat`


## Chat with a chat session ## Chat with a chat session


**POST** `/api/v1/chat/{chat_id}/session/{session_id}/completion`
**POST** `/api/v1/chat/{chat_id}/completion`


Chat with a chat session Chat with a chat session


### Request ### Request


- Method: POST - Method: POST
- URL: `http://{address} /api/v1/chat/{chat_id}/session/{session_id}/completion`
- URL: `http://{address} /api/v1/chat/{chat_id}/completion`
- Headers: - Headers:
- `content-Type: application/json` - `content-Type: application/json`
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body: - Body:
- `question`: string - `question`: string
- `stream`: bool - `stream`: bool
- `session_id`: str




#### Request example #### Request example
```bash ```bash
curl --request POST \ curl --request POST \
--url http://{address} /api/v1/chat/{chat_id}/session/{session_id}/completion \
--url http://{address} /api/v1/chat/{chat_id}/completion \
--header 'Content-Type: application/json' \ --header 'Content-Type: application/json' \
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \ --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
--data-binary '{ --data-binary '{
- `stream`: (*Body Parameter*) - `stream`: (*Body Parameter*)
The approach of streaming text generation. The approach of streaming text generation.
`False` `False`
- `session_id`: (*Body Parameter*)
The id of session.If not provided, a new session will be generated.
### Response ### Response
Success Success
```json ```json

+ 187
- 198
api/python_api_reference.md View File

## Upload document ## Upload document


```python ```python
RAGFLOW.upload_document(ds:DataSet, name:str, blob:bytes)-> bool
DataSet.upload_documents(document_list: List[dict])
``` ```


### Parameters ### Parameters


#### name
#### document_list:`List[dict]`
A list composed of dicts containing `name` and `blob`.


#### blob


### Returns
no return

### Examples
```python
from ragflow import RAGFlow

rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.create_dataset(name="kb_1")
ds.upload_documents([{name="1.txt", blob="123"}, ...] }
```
---

## Update document

```python
Document.update(update_message:dict)
```

### Parameters

#### update_message:`dict`
only `name`,`parser_config`,`parser_method` can be changed

### Returns

no return

### Examples

```python
from ragflow import RAGFlow

rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds=rag.list_datasets(id='id')
ds=ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_method": "manual"...}])
```

---


## Download document

```python
Document.download() -> bytes
```


### Returns ### Returns


bytes of the document.


### Examples ### Examples


```python
from ragflow import RAGFlow

rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds=rag.list_datasets(id="id")
ds=ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
```

--- ---


## Retrieve document
## List documents


```python ```python
RAGFlow.get_document(id:str=None,name:str=None) -> Document
Dataset.list_documents(id:str =None, keywords: str=None, offset: int=0, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> List[Document]
``` ```


### Parameters ### Parameters


#### id: `str`, *Required*
#### id: `str`


ID of the document to retrieve.
The id of the document to be got


#### name: `str`
#### keywords: `str`

List documents whose name has the given keywords. Defaults to `None`.

#### offset: `int`

The beginning number of records for paging. Defaults to `0`.


Name or title of the document.
#### limit: `int`

Records number to return, -1 means all of them. Records number to return, -1 means all of them.


#### orderby: `str`
The field by which the records should be sorted. This specifies the attribute or column used to order the results.

#### desc:`bool`
A boolean flag indicating whether the sorting should be in descending order.
### Returns ### Returns


List[Document]

A document object containing the following attributes: A document object containing the following attributes:


#### id: `str` #### id: `str`
```python ```python
from ragflow import RAGFlow from ragflow import RAGFlow


rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d",name='testdocument.txt')
print(doc)
```

---

## Save document settings

```python
Document.save() -> bool
```

### Returns

bool

### Examples

```python
from ragflow import RAGFlow

rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
doc.parser_method= "manual"
doc.save()
```

---

## Download document

```python
Document.download() -> bytes
```

### Returns

bytes of the document.

### Examples

```python
from ragflow import RAGFlow

rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
open("~/ragflow.txt", "w+").write(doc.download())
print(doc)
```

---

## List documents

```python
Dataset.list_docs(keywords: str=None, offset: int=0, limit:int = -1) -> List[Document]
```

### Parameters

#### keywords: `str`

List documents whose name has the given keywords. Defaults to `None`.

#### offset: `int`

The beginning number of records for paging. Defaults to `0`.

#### limit: `int`

Records number to return, -1 means all of them. Records number to return, -1 means all of them.

### Returns

List[Document]

### Examples

```python
from ragflow import RAGFlow

rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380") rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.create_dataset(name="kb_1") ds = rag.create_dataset(name="kb_1")


filename1 = "~/ragflow.txt" filename1 = "~/ragflow.txt"
rag.create_document(ds, name=filename1 , blob=open(filename1 , "rb").read())

filename2 = "~/infinity.txt"
rag.create_document(ds, name=filename2 , blob=open(filename2 , "rb").read())

for d in ds.list_docs(keywords="rag", offset=0, limit=12):
blob=open(filename1 , "rb").read()
list_files=[{"name":filename1,"blob":blob}]
ds.upload_documents(list_files)
for d in ds.list_documents(keywords="rag", offset=0, limit=12):
print(d) print(d)
``` ```


## Delete documents ## Delete documents


```python ```python
Document.delete() -> bool
DataSet.delete_documents(ids: List[str] = None)
``` ```
### Returns ### Returns


bool
description: delete success or not
no return


### Examples ### Examples


from ragflow import RAGFlow from ragflow import RAGFlow


rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380") rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.create_dataset(name="kb_1")

filename1 = "~/ragflow.txt"
rag.create_document(ds, name=filename1 , blob=open(filename1 , "rb").read())

filename2 = "~/infinity.txt"
rag.create_document(ds, name=filename2 , blob=open(filename2 , "rb").read())
for d in ds.list_docs(keywords="rag", offset=0, limit=12):
d.delete()
ds = rag.list_datasets(name="kb_1")
ds = ds[0]
ds.delete_documents(ids=["id_1","id_2"])
``` ```


--- ---


## Parse document
## Parse and stop parsing document


```python ```python
Document.async_parse() -> None
RAGFLOW.async_parse_documents() -> None
DataSet.async_parse_documents(document_ids:List[str]) -> None
DataSet.async_cancel_parse_documents(document_ids:List[str])-> None
``` ```


### Parameters ### Parameters


#### document_ids:`List[str]`
The ids of the documents to be parsed
???????????????????????????????????????????????????? ????????????????????????????????????????????????????


### Returns ### Returns
no return
???????????????????????????????????????????????????? ????????????????????????????????????????????????????


### Examples ### Examples


```python
#document parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="dataset_name")
name3 = 'ai.pdf'
path = 'test_data/ai.pdf'
rag.create_document(ds, name=name3, blob=open(path, "rb").read())
doc = rag.get_document(name="ai.pdf")
doc.async_parse()
print("Async parsing initiated")
```

---

## Cancel document parsing

```python
rag.async_cancel_parse_documents(ids)
RAGFLOW.async_cancel_parse_documents()-> None
```

### Parameters

#### ids, `list[]`

### Returns

?????????????????????????????????????????????????

### Examples

```python ```python
#documents parse and cancel #documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS) rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="God5") ds = rag.create_dataset(name="God5")
documents = [ documents = [
{'name': 'test1.txt', 'path': 'test_data/test1.txt'},
{'name': 'test2.txt', 'path': 'test_data/test2.txt'},
{'name': 'test3.txt', 'path': 'test_data/test3.txt'}
{'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
] ]

# Create documents in bulk
for doc_info in documents:
with open(doc_info['path'], "rb") as file:
created_doc = rag.create_document(ds, name=doc_info['name'], blob=file.read())
docs = [rag.get_document(name=doc_info['name']) for doc_info in documents]
ids = [doc.id for doc in docs]

rag.async_parse_documents(ids)
ds.upload_documents(documents)
documents=ds.list_documents(keywords="test")
ids=[]
for document in documents:
ids.append(document.id)
ds.async_parse_documents(ids)
print("Async bulk parsing initiated") print("Async bulk parsing initiated")

for doc in docs:
for progress, msg in doc.join(interval=5, timeout=10):
print(f"{doc.name}: Progress: {progress}, Message: {msg}")

cancel_result = rag.async_cancel_parse_documents(ids)
ds.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled") print("Async bulk parsing cancelled")
``` ```


---

## Join document

??????????????????

## List chunks
```python ```python
Document.join(interval=15, timeout=3600) -> iteral[Tuple[float, str]]
Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> List[Chunk]
``` ```

### Parameters ### Parameters


#### interval: `int`
- `keywords`: `str`
List chunks whose name has the given keywords
default: `None`


Time interval in seconds for progress report. Defaults to `15`.
- `offset`: `int`
The beginning number of records for paging
default: `1`


#### timeout: `int`
Timeout in seconds. Defaults to `3600`.
- `limit`: `int`
Records number to return
default: `30`


- `id`: `str`
The ID of the chunk to be retrieved
default: `None`
### Returns ### Returns
List[chunk]


iteral[Tuple[float, str]]
### Examples
```python
from ragflow import RAGFlow


rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.list_datasets("123")
ds = ds[0]
ds.async_parse_documents(["wdfxb5t547d"])
for c in doc.list_chunks(keywords="rag", offset=0, limit=12):
print(c)
```
## Add chunk ## Add chunk


```python ```python
### Parameters ### Parameters


#### content: `str`, *Required* #### content: `str`, *Required*
Contains the main text or information of the chunk.
#### important_keywords :`List[str]`
list the key terms or phrases that are significant or central to the chunk's content.


### Returns ### Returns


from ragflow import RAGFlow from ragflow import RAGFlow


rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380") rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx") chunk = doc.add_chunk(content="xxxxxxx")
``` ```


## Delete chunk ## Delete chunk


```python ```python
Chunk.delete() -> bool
Document.delete_chunks(chunk_ids: List[str])
``` ```
### Parameters
#### chunk_ids:`List[str]`
The list of chunk_id


### Returns ### Returns


bool
no return


### Examples ### Examples


from ragflow import RAGFlow from ragflow import RAGFlow


rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380") rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx") chunk = doc.add_chunk(content="xxxxxxx")
chunk.delete()
doc.delete_chunks(["id_1","id_2"])
``` ```


--- ---


## Save chunk contents
## Update chunk


```python ```python
Chunk.save() -> bool
Chunk.update(update_message: dict)
``` ```
### Parameters
- `content`: `str`
Contains the main text or information of the chunk

- `important_keywords`: `List[str]`
List the key terms or phrases that are significant or central to the chunk's content

- `available`: `int`
Indicating the availability status, `0` means unavailable and `1` means available


### Returns ### Returns


bool
no return


### Examples ### Examples


from ragflow import RAGFlow from ragflow import RAGFlow


rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380") rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx") chunk = doc.add_chunk(content="xxxxxxx")
chunk.content = "sdfx"
chunk.save()
chunk.update({"content":"sdfx...})
``` ```


--- ---
## Retrieval ## Retrieval


```python ```python
RAGFlow.retrieval(question:str, datasets:List[Dataset], document=List[Document]=None, offset:int=0, limit:int=6, similarity_threshold:float=0.1, vector_similarity_weight:float=0.3, top_k:int=1024) -> List[Chunk]
RAGFlow.retrieve(question:str="", datasets:List[str]=None, document=List[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> List[Chunk]
``` ```


### Parameters ### Parameters


Number of records engaged in vector cosine computaton. Defaults to `1024`. Number of records engaged in vector cosine computaton. Defaults to `1024`.


#### rerank_id:`str`
ID of the rerank model. Defaults to `None`.

#### keyword:`bool`
Indicating whether keyword-based matching is enabled (True) or disabled (False).

#### highlight:`bool`

Specifying whether to enable highlighting of matched terms in the results (True) or not (False).
### Returns ### Returns


List[Chunk] List[Chunk]
from ragflow import RAGFlow from ragflow import RAGFlow


rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380") rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.get_dataset(name="ragflow")
ds = rag.list_datasets(name="ragflow")
ds = ds[0]
name = 'ragflow_test.txt' name = 'ragflow_test.txt'
path = 'test_data/ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag.create_document(ds, name=name, blob=open(path, "rb").read()) rag.create_document(ds, name=name, blob=open(path, "rb").read())
doc = rag.get_document(name=name)
doc.async_parse()
# Wait for parsing to complete
for progress, msg in doc.join(interval=5, timeout=30):
print(progress, msg)
for c in rag.retrieval(question="What's ragflow?",
datasets=[ds], documents=[doc],
offset=0, limit=6, similarity_threshold=0.1,
doc = ds.list_documents(name=name)
doc = doc[0]
ds.async_parse_documents([doc.id])
for c in rag.retrieve(question="What's ragflow?",
datasets=[ds.id], documents=[doc.id],
offset=1, limit=30, similarity_threshold=0.2,
vector_similarity_weight=0.3, vector_similarity_weight=0.3,
top_k=1024 top_k=1024
): ):

+ 5
- 26
sdk/python/ragflow/modules/chunk.py View File

res_dict.pop(k) res_dict.pop(k)
super().__init__(rag, res_dict) super().__init__(rag, res_dict)


def delete(self) -> bool:
"""
Delete the chunk in the document.
"""
res = self.post('/doc/chunk/rm',
{"document_id": self.document_id, 'chunk_ids': [self.id]})
res = res.json()
if res.get("retmsg") == "success":
return True
raise Exception(res["retmsg"])


def save(self) -> bool:
"""
Save the document details to the server.
"""
res = self.post('/doc/chunk/set',
{"chunk_id": self.id,
"knowledgebase_id": self.knowledgebase_id,
"name": self.document_name,
"content": self.content,
"important_keywords": self.important_keywords,
"document_id": self.document_id,
"available": self.available,
})
def update(self,update_message:dict):
res = self.put(f"/dataset/{self.knowledgebase_id}/document/{self.document_id}/chunk/{self.id}",update_message)
res = res.json() res = res.json()
if res.get("retmsg") == "success":
return True
raise Exception(res["retmsg"])
if res.get("code") != 0 :
raise Exception(res["message"])




+ 11
- 0
sdk/python/ragflow/modules/dataset.py View File

if res.get("code") != 0: if res.get("code") != 0:
raise Exception(res["message"]) raise Exception(res["message"])
def async_parse_documents(self,document_ids):
res = self.post(f"/dataset/{self.id}/chunk",{"document_ids":document_ids})
res = res.json()
if res.get("code") != 0:
raise Exception(res.get("message"))
def async_cancel_parse_documents(self,document_ids):
res = self.rm(f"/dataset/{self.id}/chunk",{"document_ids":document_ids})
res = res.json()
if res.get("code") != 0:
raise Exception(res.get("message"))

+ 24
- 153
sdk/python/ragflow/modules/document.py View File

import time import time


from PIL.ImageFile import raise_oserror

from .base import Base from .base import Base
from .chunk import Chunk from .chunk import Chunk
from typing import List




class Document(Base): class Document(Base):
res_dict.pop(k) res_dict.pop(k)
super().__init__(rag, res_dict) super().__init__(rag, res_dict)


def update(self,update_message:dict) -> bool:
"""
Save the document details to the server.
"""
res = self.post(f'/dataset/{self.knowledgebase_id}/info/{self.id}',update_message)
res = res.json()
if res.get("code") != 0:
raise Exception(res["message"])

def delete(self) -> bool:
"""
Delete the document from the server.
"""
res = self.rm('/doc/delete',
{"document_id": self.id})
def list_chunks(self,offset=0, limit=30, keywords="", id:str=None):
data={"document_id": self.id,"keywords": keywords,"offset":offset,"limit":limit,"id":id}
res = self.get(f'/dataset/{self.knowledgebase_id}/document/{self.id}/chunk', data)
res = res.json() res = res.json()
if res.get("retmsg") == "success":
return True
raise Exception(res["retmsg"])

def download(self) -> bytes:
"""
Download the document content from the server using the Flask API.

:return: The downloaded document content in bytes.
"""
# Construct the URL for the API request using the document ID and knowledge base ID
res = self.get(f"/dataset/{self.knowledgebase_id}/document/{self.id}")

# Check the response status code to ensure the request was successful
if res.status_code == 200:
# Return the document content as bytes
return res.content
else:
# Handle the error and raise an exception
raise Exception(
f"Failed to download document. Server responded with: {res.status_code}, {res.text}"
)

def async_parse(self):
"""
Initiate document parsing asynchronously without waiting for completion.
"""
try:
# Construct request data including document ID and run status (assuming 1 means to run)
data = {"document_ids": [self.id], "run": 1}

# Send a POST request to the specified parsing status endpoint to start parsing
res = self.post(f'/doc/run', data)

# Check the server response status code
if res.status_code != 200:
raise Exception(f"Failed to start async parsing: {res.text}")

print("Async parsing started successfully.")

except Exception as e:
# Catch and handle exceptions
print(f"Error occurred during async parsing: {str(e)}")
raise

import time

def join(self, interval=5, timeout=3600):
"""
Wait for the asynchronous parsing to complete and yield parsing progress periodically.

:param interval: The time interval (in seconds) for progress reports.
:param timeout: The timeout (in seconds) for the parsing operation.
:return: An iterator yielding parsing progress and messages.
"""
start_time = time.time()
while time.time() - start_time < timeout:
# Check the parsing status
res = self.get(f'/doc/{self.id}/status', {"document_ids": [self.id]})
res_data = res.json()
data = res_data.get("data", [])

# Retrieve progress and status message
progress = data.get("progress", 0)
progress_msg = data.get("status", "")
if res.get("code") == 0:
chunks=[]
for data in res["data"].get("chunks"):
chunk = Chunk(self.rag,data)
chunks.append(chunk)
return chunks
raise Exception(res.get("message"))


yield progress, progress_msg # Yield progress and message

if progress == 100: # Parsing completed
break

time.sleep(interval)

def cancel(self):
"""
Cancel the parsing task for the document.
"""
try:
# Construct request data, including document ID and action to cancel (assuming 2 means cancel)
data = {"document_ids": [self.id], "run": 2}

# Send a POST request to the specified parsing status endpoint to cancel parsing
res = self.post(f'/doc/run', data)

# Check the server response status code
if res.status_code != 200:
print("Failed to cancel parsing. Server response:", res.text)
else:
print("Parsing cancelled successfully.")

except Exception as e:
print(f"Error occurred during async parsing cancellation: {str(e)}")
raise

def list_chunks(self, page=1, offset=0, limit=12,size=30, keywords="", available_int=None):
"""
List all chunks associated with this document by calling the external API.

Args:
page (int): The page number to retrieve (default 1).
size (int): The number of chunks per page (default 30).
keywords (str): Keywords for searching specific chunks (default "").
available_int (int): Filter for available chunks (optional).

Returns:
list: A list of chunks returned from the API.
"""
data = {
"document_id": self.id,
"page": page,
"size": size,
"keywords": keywords,
"offset":offset,
"limit":limit
}

if available_int is not None:
data["available_int"] = available_int

res = self.post(f'/doc/chunk/list', data)
if res.status_code == 200:
res_data = res.json()
if res_data.get("retmsg") == "success":
chunks=[]
for chunk_data in res_data["data"].get("chunks", []):
chunk=Chunk(self.rag,chunk_data)
chunks.append(chunk)
return chunks
else:
raise Exception(f"Error fetching chunks: {res_data.get('retmsg')}")
else:
raise Exception(f"API request failed with status code {res.status_code}")


def add_chunk(self, content: str): def add_chunk(self, content: str):
res = self.post('/doc/chunk/create', {"document_id": self.id, "content":content})
if res.status_code == 200:
res_data = res.json().get("data")
chunk_data = res_data.get("chunk")
return Chunk(self.rag,chunk_data)
else:
raise Exception(f"Failed to add chunk: {res.status_code} {res.text}")
res = self.post(f'/dataset/{self.knowledgebase_id}/document/{self.id}/chunk', {"content":content})
res = res.json()
if res.get("code") == 0:
return Chunk(self.rag,res["data"].get("chunk"))
raise Exception(res.get("message"))

def delete_chunks(self,ids:List[str]):
res = self.rm(f"dataset/{self.knowledgebase_id}/document/{self.id}/chunk",{"ids":ids})
res = res.json()
if res.get("code")!=0:
raise Exception(res.get("message"))

+ 3
- 2
sdk/python/ragflow/modules/session.py View File

for message in self.messages: for message in self.messages:
if "reference" in message: if "reference" in message:
message.pop("reference") message.pop("reference")
res = self.post(f"/chat/{self.chat_id}/session/{self.id}/completion",
{"question": question, "stream": True}, stream=stream)
res = self.post(f"/chat/{self.chat_id}/completion",
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
for line in res.iter_lines(): for line in res.iter_lines():
line = line.decode("utf-8") line = line.decode("utf-8")
if line.startswith("{"): if line.startswith("{"):
self.term_similarity = None self.term_similarity = None
self.positions = None self.positions = None
super().__init__(rag, res_dict) super().__init__(rag, res_dict)

+ 18
- 93
sdk/python/ragflow/ragflow.py View File

raise Exception(res["message"]) raise Exception(res["message"])





def async_parse_documents(self, doc_ids):
"""
Asynchronously start parsing multiple documents without waiting for completion.

:param doc_ids: A list containing multiple document IDs.
"""
try:
if not doc_ids or not isinstance(doc_ids, list):
raise ValueError("doc_ids must be a non-empty list of document IDs")

data = {"document_ids": doc_ids, "run": 1}

res = self.post(f'/doc/run', data)

if res.status_code != 200:
raise Exception(f"Failed to start async parsing for documents: {res.text}")

print(f"Async parsing started successfully for documents: {doc_ids}")

except Exception as e:
print(f"Error occurred during async parsing for documents: {str(e)}")
raise

def async_cancel_parse_documents(self, doc_ids):
"""
Cancel the asynchronous parsing of multiple documents.

:param doc_ids: A list containing multiple document IDs.
"""
try:
if not doc_ids or not isinstance(doc_ids, list):
raise ValueError("doc_ids must be a non-empty list of document IDs")
data = {"document_ids": doc_ids, "run": 2}
res = self.post(f'/doc/run', data)

if res.status_code != 200:
raise Exception(f"Failed to cancel async parsing for documents: {res.text}")

print(f"Async parsing canceled successfully for documents: {doc_ids}")

except Exception as e:
print(f"Error occurred during canceling parsing for documents: {str(e)}")
raise

def retrieval(self,
question,
datasets=None,
documents=None,
offset=0,
limit=6,
similarity_threshold=0.1,
vector_similarity_weight=0.3,
top_k=1024):
"""
Perform document retrieval based on the given parameters.

:param question: The query question.
:param datasets: A list of datasets (optional, as documents may be provided directly).
:param documents: A list of documents (if specific documents are provided).
:param offset: Offset for the retrieval results.
:param limit: Maximum number of retrieval results.
:param similarity_threshold: Similarity threshold.
:param vector_similarity_weight: Weight of vector similarity.
:param top_k: Number of top most similar documents to consider (for pre-filtering or ranking).

Note: This is a hypothetical implementation and may need adjustments based on the actual backend service API.
"""
try:
data = {
"question": question,
"datasets": datasets if datasets is not None else [],
"documents": [doc.id if hasattr(doc, 'id') else doc for doc in
documents] if documents is not None else [],
def retrieve(self, question="",datasets=None,documents=None, offset=1, limit=30, similarity_threshold=0.2,vector_similarity_weight=0.3,top_k=1024,rerank_id:str=None,keyword:bool=False,):
data_params = {
"offset": offset, "offset": offset,
"limit": limit, "limit": limit,
"similarity_threshold": similarity_threshold, "similarity_threshold": similarity_threshold,
"vector_similarity_weight": vector_similarity_weight, "vector_similarity_weight": vector_similarity_weight,
"top_k": top_k, "top_k": top_k,
"knowledgebase_id": datasets, "knowledgebase_id": datasets,
"rerank_id":rerank_id,
"keyword":keyword
}
data_json ={
"question": question,
"datasets": datasets,
"documents": documents
} }


# Send a POST request to the backend service (using requests library as an example, actual implementation may vary) # Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
res = self.post(f'/doc/retrieval_test', data)

# Check the response status code
if res.status_code == 200:
res_data = res.json()
if res_data.get("retmsg") == "success":
chunks = []
for chunk_data in res_data["data"].get("chunks", []):
chunk = Chunk(self, chunk_data)
chunks.append(chunk)
return chunks
else:
raise Exception(f"Error fetching chunks: {res_data.get('retmsg')}")
else:
raise Exception(f"API request failed with status code {res.status_code}")

except Exception as e:
print(f"An error occurred during retrieval: {e}")
raise
res = self.get(f'/retrieval', data_params,data_json)
res = res.json()
if res.get("code") ==0:
chunks=[]
for chunk_data in res["data"].get("chunks"):
chunk=Chunk(self,chunk_data)
chunks.append(chunk)
return chunks
raise Exception(res.get("message"))

+ 17
- 27
sdk/python/test/t_document.py View File

# Check if the retrieved document is of type Document # Check if the retrieved document is of type Document
if isinstance(doc, Document): if isinstance(doc, Document):
# Download the document content and save it to a file # Download the document content and save it to a file
try:
with open("ragflow.txt", "wb+") as file:
file.write(doc.download())
# Print the document object for debugging
print(doc)

# Assert that the download was successful
assert True, "Document downloaded successfully."
except Exception as e:
# If an error occurs, raise an assertion error
assert False, f"Failed to download document, error: {str(e)}"
with open("./ragflow.txt", "wb+") as file:
file.write(doc.download())
# Print the document object for debugging
print(doc)

# Assert that the download was successful
assert True, f"Failed to download document, error: {doc}"
else: else:
# If the document retrieval fails, assert failure # If the document retrieval fails, assert failure
assert False, f"Failed to get document, error: {doc}" assert False, f"Failed to get document, error: {doc}"
blob2 = b"Sample document content for ingestion test222." blob2 = b"Sample document content for ingestion test222."
list_1 = [{"name":name1,"blob":blob1},{"name":name2,"blob":blob2}] list_1 = [{"name":name1,"blob":blob1},{"name":name2,"blob":blob2}]
ds.upload_documents(list_1) ds.upload_documents(list_1)
for d in ds.list_docs(keywords="test", offset=0, limit=12):
for d in ds.list_documents(keywords="test", offset=0, limit=12):
assert isinstance(d, Document), "Failed to upload documents" assert isinstance(d, Document), "Failed to upload documents"


def test_delete_documents_in_dataset_with_success(self): def test_delete_documents_in_dataset_with_success(self):
blob1 = b"Sample document content for ingestion test333." blob1 = b"Sample document content for ingestion test333."
name2 = "Test Document444.txt" name2 = "Test Document444.txt"
blob2 = b"Sample document content for ingestion test444." blob2 = b"Sample document content for ingestion test444."
name3 = 'test.txt'
path = 'test_data/test.txt'
rag.create_document(ds, name=name3, blob=open(path, "rb").read())
rag.create_document(ds, name=name1, blob=blob1)
rag.create_document(ds, name=name2, blob=blob2)
for d in ds.list_docs(keywords="document", offset=0, limit=12):
ds.upload_documents([{"name":name1,"blob":blob1},{"name":name2,"blob":blob2}])
for d in ds.list_documents(keywords="document", offset=0, limit=12):
assert isinstance(d, Document) assert isinstance(d, Document)
d.delete()
print(d)
remaining_docs = ds.list_docs(keywords="rag", offset=0, limit=12)
ds.delete_documents([d.id])
remaining_docs = ds.list_documents(keywords="rag", offset=0, limit=12)
assert len(remaining_docs) == 0, "Documents were not properly deleted." assert len(remaining_docs) == 0, "Documents were not properly deleted."


def test_parse_and_cancel_document(self): def test_parse_and_cancel_document(self):


# Define the document name and path # Define the document name and path
name3 = 'westworld.pdf' name3 = 'westworld.pdf'
path = 'test_data/westworld.pdf'
path = './test_data/westworld.pdf'


# Create a document in the dataset using the file path # Create a document in the dataset using the file path
rag.create_document(ds, name=name3, blob=open(path, "rb").read())
ds.upload_documents({"name":name3, "blob":open(path, "rb").read()})


# Retrieve the document by name # Retrieve the document by name
doc = rag.get_document(name="westworld.pdf")

# Initiate asynchronous parsing
doc.async_parse()
doc = rag.list_documents(name="westworld.pdf")
doc = doc[0]
ds.async_parse_documents(document_ids=[])


# Print message to confirm asynchronous parsing has been initiated # Print message to confirm asynchronous parsing has been initiated
print("Async parsing initiated") print("Async parsing initiated")

Loading…
Cancel
Save