Quellcode durchsuchen

add support for LM Studio (#1663)

### What problem does this PR solve?

#1602 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
tags/v0.9.0
黄腾 vor 1 Jahr
Ursprung
Commit
d96348eb22
Es ist kein Account mit der E-Mail-Adresse des Committers verbunden

+ 8
- 4
api/apps/llm_app.py Datei anzeigen

from api.db.db_models import TenantLLM from api.db.db_models import TenantLLM
from api.utils.api_utils import get_json_result from api.utils.api_utils import get_json_result
from rag.llm import EmbeddingModel, ChatModel, RerankModel,CvModel from rag.llm import EmbeddingModel, ChatModel, RerankModel,CvModel
import requests
@manager.route('/factories', methods=['GET']) @manager.route('/factories', methods=['GET'])
@login_required @login_required
"ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256" "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
"0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
) )
m, tc = mdl.describe(img_url)
if not tc:
raise Exception(m)
res = requests.get(img_url)
if res.status_code == 200:
m, tc = mdl.describe(res.content)
if not tc:
raise Exception(m)
else:
raise ConnectionError("fail to download the test picture")
except Exception as e: except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(e) msg += f"\nFail to access model({llm['llm_name']})." + str(e)
else: else:

+ 7
- 0
conf/llm_factories.json Datei anzeigen

"model_type": "image2text" "model_type": "image2text"
} }
] ]
},
{
"name": "LM-Studio",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
"status": "1",
"llm": []
} }
] ]
} }

+ 15
- 11
rag/llm/__init__.py Datei anzeigen

"BAAI": DefaultEmbedding, "BAAI": DefaultEmbedding,
"Mistral": MistralEmbed, "Mistral": MistralEmbed,
"Bedrock": BedrockEmbed, "Bedrock": BedrockEmbed,
"Gemini":GeminiEmbed,
"NVIDIA":NvidiaEmbed
"Gemini": GeminiEmbed,
"NVIDIA": NvidiaEmbed,
"LM-Studio": LmStudioEmbed
} }




"Tongyi-Qianwen": QWenCV, "Tongyi-Qianwen": QWenCV,
"ZHIPU-AI": Zhipu4V, "ZHIPU-AI": Zhipu4V,
"Moonshot": LocalCV, "Moonshot": LocalCV,
'Gemini':GeminiCV,
'OpenRouter':OpenRouterCV,
"LocalAI":LocalAICV,
"NVIDIA":NvidiaCV
"Gemini": GeminiCV,
"OpenRouter": OpenRouterCV,
"LocalAI": LocalAICV,
"NVIDIA": NvidiaCV,
"LM-Studio": LmStudioCV
} }




"MiniMax": MiniMaxChat, "MiniMax": MiniMaxChat,
"Minimax": MiniMaxChat, "Minimax": MiniMaxChat,
"Mistral": MistralChat, "Mistral": MistralChat,
'Gemini' : GeminiChat,
"Gemini": GeminiChat,
"Bedrock": BedrockChat, "Bedrock": BedrockChat,
"Groq": GroqChat, "Groq": GroqChat,
'OpenRouter':OpenRouterChat,
"StepFun":StepFunChat,
"NVIDIA":NvidiaChat
"OpenRouter": OpenRouterChat,
"StepFun": StepFunChat,
"NVIDIA": NvidiaChat,
"LM-Studio": LmStudioChat
} }




"Jina": JinaRerank, "Jina": JinaRerank,
"Youdao": YoudaoRerank, "Youdao": YoudaoRerank,
"Xinference": XInferenceRerank, "Xinference": XInferenceRerank,
"NVIDIA":NvidiaRerank
"NVIDIA": NvidiaRerank,
"LM-Studio": LmStudioRerank
} }





+ 12
- 0
rag/llm/chat_model.py Datei anzeigen

yield ans + "\n**ERROR**: " + str(e) yield ans + "\n**ERROR**: " + str(e)


yield total_tokens yield total_tokens


class LmStudioChat(Base):
def __init__(self, key, model_name, base_url):
from os.path import join

if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
self.base_url = join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
self.model_name = model_name

+ 13
- 9
rag/llm/cv_model.py Datei anzeigen

self.lang = lang self.lang = lang


def describe(self, image, max_tokens=300): def describe(self, image, max_tokens=300):
if not isinstance(image, bytes) and not isinstance(
image, BytesIO
): # if url string
prompt = self.prompt(image)
for i in range(len(prompt)):
prompt[i]["content"]["image_url"]["url"] = image
else:
b64 = self.image2base64(image)
prompt = self.prompt(b64)
b64 = self.image2base64(image)
prompt = self.prompt(b64)
for i in range(len(prompt)): for i in range(len(prompt)):
for c in prompt[i]["content"]: for c in prompt[i]["content"]:
if "text" in c: if "text" in c:
"content": text + f' <img src="data:image/jpeg;base64,{b64}"/>', "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
} }
] ]


class LmStudioCV(LocalAICV):
def __init__(self, key, model_name, base_url, lang="Chinese"):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split('/')[-1] != 'v1':
self.base_url = os.path.join(base_url,'v1')
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
self.model_name = model_name
self.lang = lang

+ 21
- 0
rag/llm/embedding_model.py Datei anzeigen

def encode_queries(self, text): def encode_queries(self, text):
embds, cnt = self.encode([text]) embds, cnt = self.encode([text])
return np.array(embds[0]), cnt return np.array(embds[0]), cnt


class LmStudioEmbed(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
self.base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
self.model_name = model_name

def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts, model=self.model_name)
return (
np.array([d.embedding for d in res.data]),
1024,
) # local embedding for LmStudio donot count tokens

def encode_queries(self, text):
res = self.client.embeddings.create(text, model=self.model_name)
return np.array(res.data[0].embedding), 1024

+ 8
- 0
rag/llm/rerank_model.py Datei anzeigen

} }
res = requests.post(self.base_url, headers=self.headers, json=data).json() res = requests.post(self.base_url, headers=self.headers, json=data).json()
return (np.array([d["logit"] for d in res["rankings"]]), token_count) return (np.array([d["logit"] for d in res["rankings"]]), token_count)


class LmStudioRerank(Base):
def __init__(self, key, model_name, base_url):
pass

def similarity(self, query: str, texts: list):
raise NotImplementedError("The LmStudioRerank has not been implement")

+ 9704
- 0
web/src/assets/svg/llm/lm-studio.svg
Datei-Diff unterdrückt, da er zu groß ist
Datei anzeigen


+ 1
- 1
web/src/pages/user-setting/constants.tsx Datei anzeigen



export * from '@/constants/setting'; export * from '@/constants/setting';


export const LocalLlmFactories = ['Ollama', 'Xinference','LocalAI'];
export const LocalLlmFactories = ['Ollama', 'Xinference','LocalAI','LM-Studio'];

+ 2
- 1
web/src/pages/user-setting/setting-model/constant.ts Datei anzeigen

OpenRouter: 'open-router', OpenRouter: 'open-router',
LocalAI: 'local-ai', LocalAI: 'local-ai',
StepFun: 'stepfun', StepFun: 'stepfun',
NVIDIA:'nvidia'
NVIDIA:'nvidia',
'LM-Studio':'lm-studio'
}; };


export const BedrockRegionList = [ export const BedrockRegionList = [

Laden…
Abbrechen
Speichern