|
|
|
@@ -0,0 +1,558 @@ |
|
|
|
# |
|
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved. |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# |
|
|
|
|
|
|
|
import logging |
|
|
|
import re |
|
|
|
import json |
|
|
|
import time |
|
|
|
import os |
|
|
|
|
|
|
|
import copy |
|
|
|
from opensearchpy import OpenSearch, NotFoundError |
|
|
|
from opensearchpy import UpdateByQuery, Q, Search, Index |
|
|
|
from opensearchpy import ConnectionTimeout |
|
|
|
from rag import settings |
|
|
|
from rag.settings import TAG_FLD, PAGERANK_FLD |
|
|
|
from rag.utils import singleton |
|
|
|
from api.utils.file_utils import get_project_base_directory |
|
|
|
from rag.utils.doc_store_conn import DocStoreConnection, MatchExpr, OrderByExpr, MatchTextExpr, MatchDenseExpr, \ |
|
|
|
FusionExpr |
|
|
|
from rag.nlp import is_english, rag_tokenizer |
|
|
|
|
|
|
|
ATTEMPT_TIME = 2 |
|
|
|
|
|
|
|
logger = logging.getLogger('ragflow.opensearch_conn') |
|
|
|
|
|
|
|
|
|
|
|
@singleton |
|
|
|
class OSConnection(DocStoreConnection): |
|
|
|
def __init__(self): |
|
|
|
self.info = {} |
|
|
|
logger.info(f"Use OpenSearch {settings.OS['hosts']} as the doc engine.") |
|
|
|
for _ in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
self.os = OpenSearch( |
|
|
|
settings.OS["hosts"].split(","), |
|
|
|
http_auth=(settings.OS["username"], settings.OS[ |
|
|
|
"password"]) if "username" in settings.OS and "password" in settings.OS else None, |
|
|
|
verify_certs=False, |
|
|
|
timeout=600 |
|
|
|
) |
|
|
|
if self.os: |
|
|
|
self.info = self.os.info() |
|
|
|
break |
|
|
|
except Exception as e: |
|
|
|
logger.warning(f"{str(e)}. Waiting OpenSearch {settings.OS['hosts']} to be healthy.") |
|
|
|
time.sleep(5) |
|
|
|
if not self.os.ping(): |
|
|
|
msg = f"OpenSearch {settings.OS['hosts']} is unhealthy in 120s." |
|
|
|
logger.error(msg) |
|
|
|
raise Exception(msg) |
|
|
|
v = self.info.get("version", {"number": "2.18.0"}) |
|
|
|
v = v["number"].split(".")[0] |
|
|
|
if int(v) < 2: |
|
|
|
msg = f"OpenSearch version must be greater than or equal to 2, current version: {v}" |
|
|
|
logger.error(msg) |
|
|
|
raise Exception(msg) |
|
|
|
fp_mapping = os.path.join(get_project_base_directory(), "conf", "os_mapping.json") |
|
|
|
if not os.path.exists(fp_mapping): |
|
|
|
msg = f"OpenSearch mapping file not found at {fp_mapping}" |
|
|
|
logger.error(msg) |
|
|
|
raise Exception(msg) |
|
|
|
self.mapping = json.load(open(fp_mapping, "r")) |
|
|
|
logger.info(f"OpenSearch {settings.OS['hosts']} is healthy.") |
|
|
|
|
|
|
|
""" |
|
|
|
Database operations |
|
|
|
""" |
|
|
|
|
|
|
|
def dbType(self) -> str: |
|
|
|
return "opensearch" |
|
|
|
|
|
|
|
def health(self) -> dict: |
|
|
|
health_dict = dict(self.os.cluster.health()) |
|
|
|
health_dict["type"] = "opensearch" |
|
|
|
return health_dict |
|
|
|
|
|
|
|
""" |
|
|
|
Table operations |
|
|
|
""" |
|
|
|
|
|
|
|
def createIdx(self, indexName: str, knowledgebaseId: str, vectorSize: int): |
|
|
|
if self.indexExist(indexName, knowledgebaseId): |
|
|
|
return True |
|
|
|
try: |
|
|
|
from opensearchpy.client import IndicesClient |
|
|
|
return IndicesClient(self.os).create(index=indexName, |
|
|
|
body=self.mapping) |
|
|
|
except Exception: |
|
|
|
logger.exception("OSConnection.createIndex error %s" % (indexName)) |
|
|
|
|
|
|
|
def deleteIdx(self, indexName: str, knowledgebaseId: str): |
|
|
|
if len(knowledgebaseId) > 0: |
|
|
|
# The index need to be alive after any kb deletion since all kb under this tenant are in one index. |
|
|
|
return |
|
|
|
try: |
|
|
|
self.os.indices.delete(index=indexName, allow_no_indices=True) |
|
|
|
except NotFoundError: |
|
|
|
pass |
|
|
|
except Exception: |
|
|
|
logger.exception("OSConnection.deleteIdx error %s" % (indexName)) |
|
|
|
|
|
|
|
def indexExist(self, indexName: str, knowledgebaseId: str = None) -> bool: |
|
|
|
s = Index(indexName, self.os) |
|
|
|
for i in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
return s.exists() |
|
|
|
except Exception as e: |
|
|
|
logger.exception("OSConnection.indexExist got exception") |
|
|
|
if str(e).find("Timeout") > 0 or str(e).find("Conflict") > 0: |
|
|
|
continue |
|
|
|
break |
|
|
|
return False |
|
|
|
|
|
|
|
""" |
|
|
|
CRUD operations |
|
|
|
""" |
|
|
|
|
|
|
|
def search( |
|
|
|
self, selectFields: list[str], |
|
|
|
highlightFields: list[str], |
|
|
|
condition: dict, |
|
|
|
matchExprs: list[MatchExpr], |
|
|
|
orderBy: OrderByExpr, |
|
|
|
offset: int, |
|
|
|
limit: int, |
|
|
|
indexNames: str | list[str], |
|
|
|
knowledgebaseIds: list[str], |
|
|
|
aggFields: list[str] = [], |
|
|
|
rank_feature: dict | None = None |
|
|
|
): |
|
|
|
""" |
|
|
|
Refers to https://github.com/opensearch-project/opensearch-py/blob/main/guides/dsl.md |
|
|
|
""" |
|
|
|
use_knn = False |
|
|
|
if isinstance(indexNames, str): |
|
|
|
indexNames = indexNames.split(",") |
|
|
|
assert isinstance(indexNames, list) and len(indexNames) > 0 |
|
|
|
assert "_id" not in condition |
|
|
|
|
|
|
|
bqry = Q("bool", must=[]) |
|
|
|
condition["kb_id"] = knowledgebaseIds |
|
|
|
for k, v in condition.items(): |
|
|
|
if k == "available_int": |
|
|
|
if v == 0: |
|
|
|
bqry.filter.append(Q("range", available_int={"lt": 1})) |
|
|
|
else: |
|
|
|
bqry.filter.append( |
|
|
|
Q("bool", must_not=Q("range", available_int={"lt": 1}))) |
|
|
|
continue |
|
|
|
if not v: |
|
|
|
continue |
|
|
|
if isinstance(v, list): |
|
|
|
bqry.filter.append(Q("terms", **{k: v})) |
|
|
|
elif isinstance(v, str) or isinstance(v, int): |
|
|
|
bqry.filter.append(Q("term", **{k: v})) |
|
|
|
else: |
|
|
|
raise Exception( |
|
|
|
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.") |
|
|
|
|
|
|
|
s = Search() |
|
|
|
vector_similarity_weight = 0.5 |
|
|
|
for m in matchExprs: |
|
|
|
if isinstance(m, FusionExpr) and m.method == "weighted_sum" and "weights" in m.fusion_params: |
|
|
|
assert len(matchExprs) == 3 and isinstance(matchExprs[0], MatchTextExpr) and isinstance(matchExprs[1], |
|
|
|
MatchDenseExpr) and isinstance( |
|
|
|
matchExprs[2], FusionExpr) |
|
|
|
weights = m.fusion_params["weights"] |
|
|
|
vector_similarity_weight = float(weights.split(",")[1]) |
|
|
|
knn_query = {} |
|
|
|
for m in matchExprs: |
|
|
|
if isinstance(m, MatchTextExpr): |
|
|
|
minimum_should_match = m.extra_options.get("minimum_should_match", 0.0) |
|
|
|
if isinstance(minimum_should_match, float): |
|
|
|
minimum_should_match = str(int(minimum_should_match * 100)) + "%" |
|
|
|
bqry.must.append(Q("query_string", fields=m.fields, |
|
|
|
type="best_fields", query=m.matching_text, |
|
|
|
minimum_should_match=minimum_should_match, |
|
|
|
boost=1)) |
|
|
|
bqry.boost = 1.0 - vector_similarity_weight |
|
|
|
|
|
|
|
# Elasticsearch has the encapsulation of KNN_search in python sdk |
|
|
|
# while the Python SDK for OpenSearch does not provide encapsulation for KNN_search, |
|
|
|
# the following codes implement KNN_search in OpenSearch using DSL |
|
|
|
# Besides, Opensearch's DSL for KNN_search query syntax differs from that in Elasticsearch, I also made some adaptions for it |
|
|
|
elif isinstance(m, MatchDenseExpr): |
|
|
|
assert (bqry is not None) |
|
|
|
similarity = 0.0 |
|
|
|
if "similarity" in m.extra_options: |
|
|
|
similarity = m.extra_options["similarity"] |
|
|
|
use_knn = True |
|
|
|
vector_column_name = m.vector_column_name |
|
|
|
knn_query[vector_column_name] = {} |
|
|
|
knn_query[vector_column_name]["vector"] = list(m.embedding_data) |
|
|
|
knn_query[vector_column_name]["k"] = m.topn |
|
|
|
knn_query[vector_column_name]["filter"] = bqry.to_dict() |
|
|
|
knn_query[vector_column_name]["boost"] = similarity |
|
|
|
|
|
|
|
if bqry and rank_feature: |
|
|
|
for fld, sc in rank_feature.items(): |
|
|
|
if fld != PAGERANK_FLD: |
|
|
|
fld = f"{TAG_FLD}.{fld}" |
|
|
|
bqry.should.append(Q("rank_feature", field=fld, linear={}, boost=sc)) |
|
|
|
|
|
|
|
if bqry: |
|
|
|
s = s.query(bqry) |
|
|
|
for field in highlightFields: |
|
|
|
s = s.highlight(field) |
|
|
|
|
|
|
|
if orderBy: |
|
|
|
orders = list() |
|
|
|
for field, order in orderBy.fields: |
|
|
|
order = "asc" if order == 0 else "desc" |
|
|
|
if field in ["page_num_int", "top_int"]: |
|
|
|
order_info = {"order": order, "unmapped_type": "float", |
|
|
|
"mode": "avg", "numeric_type": "double"} |
|
|
|
elif field.endswith("_int") or field.endswith("_flt"): |
|
|
|
order_info = {"order": order, "unmapped_type": "float"} |
|
|
|
else: |
|
|
|
order_info = {"order": order, "unmapped_type": "text"} |
|
|
|
orders.append({field: order_info}) |
|
|
|
s = s.sort(*orders) |
|
|
|
|
|
|
|
for fld in aggFields: |
|
|
|
s.aggs.bucket(f'aggs_{fld}', 'terms', field=fld, size=1000000) |
|
|
|
|
|
|
|
if limit > 0: |
|
|
|
s = s[offset:offset + limit] |
|
|
|
q = s.to_dict() |
|
|
|
logger.debug(f"OSConnection.search {str(indexNames)} query: " + json.dumps(q)) |
|
|
|
|
|
|
|
if use_knn: |
|
|
|
del q["query"] |
|
|
|
q["query"] = {"knn" : knn_query} |
|
|
|
|
|
|
|
for i in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
res = self.os.search(index=indexNames, |
|
|
|
body=q, |
|
|
|
timeout=600, |
|
|
|
# search_type="dfs_query_then_fetch", |
|
|
|
track_total_hits=True, |
|
|
|
_source=True) |
|
|
|
if str(res.get("timed_out", "")).lower() == "true": |
|
|
|
raise Exception("OpenSearch Timeout.") |
|
|
|
logger.debug(f"OSConnection.search {str(indexNames)} res: " + str(res)) |
|
|
|
return res |
|
|
|
except Exception as e: |
|
|
|
logger.exception(f"OSConnection.search {str(indexNames)} query: " + str(q)) |
|
|
|
if str(e).find("Timeout") > 0: |
|
|
|
continue |
|
|
|
raise e |
|
|
|
logger.error("OSConnection.search timeout for 3 times!") |
|
|
|
raise Exception("OSConnection.search timeout.") |
|
|
|
|
|
|
|
def get(self, chunkId: str, indexName: str, knowledgebaseIds: list[str]) -> dict | None: |
|
|
|
for i in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
res = self.os.get(index=(indexName), |
|
|
|
id=chunkId, source=True, ) |
|
|
|
if str(res.get("timed_out", "")).lower() == "true": |
|
|
|
raise Exception("Es Timeout.") |
|
|
|
chunk = res["_source"] |
|
|
|
chunk["id"] = chunkId |
|
|
|
return chunk |
|
|
|
except NotFoundError: |
|
|
|
return None |
|
|
|
except Exception as e: |
|
|
|
logger.exception(f"OSConnection.get({chunkId}) got exception") |
|
|
|
if str(e).find("Timeout") > 0: |
|
|
|
continue |
|
|
|
raise e |
|
|
|
logger.error("OSConnection.get timeout for 3 times!") |
|
|
|
raise Exception("OSConnection.get timeout.") |
|
|
|
|
|
|
|
def insert(self, documents: list[dict], indexName: str, knowledgebaseId: str = None) -> list[str]: |
|
|
|
# Refers to https://opensearch.org/docs/latest/api-reference/document-apis/bulk/ |
|
|
|
operations = [] |
|
|
|
for d in documents: |
|
|
|
assert "_id" not in d |
|
|
|
assert "id" in d |
|
|
|
d_copy = copy.deepcopy(d) |
|
|
|
meta_id = d_copy.pop("id", "") |
|
|
|
operations.append( |
|
|
|
{"index": {"_index": indexName, "_id": meta_id}}) |
|
|
|
operations.append(d_copy) |
|
|
|
|
|
|
|
res = [] |
|
|
|
for _ in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
res = [] |
|
|
|
r = self.os.bulk(index=(indexName), body=operations, |
|
|
|
refresh=False, timeout=60) |
|
|
|
if re.search(r"False", str(r["errors"]), re.IGNORECASE): |
|
|
|
return res |
|
|
|
|
|
|
|
for item in r["items"]: |
|
|
|
for action in ["create", "delete", "index", "update"]: |
|
|
|
if action in item and "error" in item[action]: |
|
|
|
res.append(str(item[action]["_id"]) + ":" + str(item[action]["error"])) |
|
|
|
return res |
|
|
|
except Exception as e: |
|
|
|
res.append(str(e)) |
|
|
|
logger.warning("OSConnection.insert got exception: " + str(e)) |
|
|
|
res = [] |
|
|
|
if re.search(r"(Timeout|time out)", str(e), re.IGNORECASE): |
|
|
|
res.append(str(e)) |
|
|
|
time.sleep(3) |
|
|
|
continue |
|
|
|
return res |
|
|
|
|
|
|
|
def update(self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str) -> bool: |
|
|
|
doc = copy.deepcopy(newValue) |
|
|
|
doc.pop("id", None) |
|
|
|
if "id" in condition and isinstance(condition["id"], str): |
|
|
|
# update specific single document |
|
|
|
chunkId = condition["id"] |
|
|
|
for i in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
self.os.update(index=indexName, id=chunkId, doc=doc) |
|
|
|
return True |
|
|
|
except Exception as e: |
|
|
|
logger.exception( |
|
|
|
f"OSConnection.update(index={indexName}, id={id}, doc={json.dumps(condition, ensure_ascii=False)}) got exception") |
|
|
|
if re.search(r"(timeout|connection)", str(e).lower()): |
|
|
|
continue |
|
|
|
break |
|
|
|
return False |
|
|
|
|
|
|
|
# update unspecific maybe-multiple documents |
|
|
|
bqry = Q("bool") |
|
|
|
for k, v in condition.items(): |
|
|
|
if not isinstance(k, str) or not v: |
|
|
|
continue |
|
|
|
if k == "exists": |
|
|
|
bqry.filter.append(Q("exists", field=v)) |
|
|
|
continue |
|
|
|
if isinstance(v, list): |
|
|
|
bqry.filter.append(Q("terms", **{k: v})) |
|
|
|
elif isinstance(v, str) or isinstance(v, int): |
|
|
|
bqry.filter.append(Q("term", **{k: v})) |
|
|
|
else: |
|
|
|
raise Exception( |
|
|
|
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.") |
|
|
|
scripts = [] |
|
|
|
params = {} |
|
|
|
for k, v in newValue.items(): |
|
|
|
if k == "remove": |
|
|
|
if isinstance(v, str): |
|
|
|
scripts.append(f"ctx._source.remove('{v}');") |
|
|
|
if isinstance(v, dict): |
|
|
|
for kk, vv in v.items(): |
|
|
|
scripts.append(f"int i=ctx._source.{kk}.indexOf(params.p_{kk});ctx._source.{kk}.remove(i);") |
|
|
|
params[f"p_{kk}"] = vv |
|
|
|
continue |
|
|
|
if k == "add": |
|
|
|
if isinstance(v, dict): |
|
|
|
for kk, vv in v.items(): |
|
|
|
scripts.append(f"ctx._source.{kk}.add(params.pp_{kk});") |
|
|
|
params[f"pp_{kk}"] = vv.strip() |
|
|
|
continue |
|
|
|
if (not isinstance(k, str) or not v) and k != "available_int": |
|
|
|
continue |
|
|
|
if isinstance(v, str): |
|
|
|
v = re.sub(r"(['\n\r]|\\.)", " ", v) |
|
|
|
params[f"pp_{k}"] = v |
|
|
|
scripts.append(f"ctx._source.{k}=params.pp_{k};") |
|
|
|
elif isinstance(v, int) or isinstance(v, float): |
|
|
|
scripts.append(f"ctx._source.{k}={v};") |
|
|
|
elif isinstance(v, list): |
|
|
|
scripts.append(f"ctx._source.{k}=params.pp_{k};") |
|
|
|
params[f"pp_{k}"] = json.dumps(v, ensure_ascii=False) |
|
|
|
else: |
|
|
|
raise Exception( |
|
|
|
f"newValue `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str.") |
|
|
|
ubq = UpdateByQuery( |
|
|
|
index=indexName).using( |
|
|
|
self.os).query(bqry) |
|
|
|
ubq = ubq.script(source="".join(scripts), params=params) |
|
|
|
ubq = ubq.params(refresh=True) |
|
|
|
ubq = ubq.params(slices=5) |
|
|
|
ubq = ubq.params(conflicts="proceed") |
|
|
|
|
|
|
|
for _ in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
_ = ubq.execute() |
|
|
|
return True |
|
|
|
except Exception as e: |
|
|
|
logger.error("OSConnection.update got exception: " + str(e) + "\n".join(scripts)) |
|
|
|
if re.search(r"(timeout|connection|conflict)", str(e).lower()): |
|
|
|
continue |
|
|
|
break |
|
|
|
return False |
|
|
|
|
|
|
|
def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int: |
|
|
|
qry = None |
|
|
|
assert "_id" not in condition |
|
|
|
if "id" in condition: |
|
|
|
chunk_ids = condition["id"] |
|
|
|
if not isinstance(chunk_ids, list): |
|
|
|
chunk_ids = [chunk_ids] |
|
|
|
qry = Q("ids", values=chunk_ids) |
|
|
|
else: |
|
|
|
qry = Q("bool") |
|
|
|
for k, v in condition.items(): |
|
|
|
if k == "exists": |
|
|
|
qry.filter.append(Q("exists", field=v)) |
|
|
|
|
|
|
|
elif k == "must_not": |
|
|
|
if isinstance(v, dict): |
|
|
|
for kk, vv in v.items(): |
|
|
|
if kk == "exists": |
|
|
|
qry.must_not.append(Q("exists", field=vv)) |
|
|
|
|
|
|
|
elif isinstance(v, list): |
|
|
|
qry.must.append(Q("terms", **{k: v})) |
|
|
|
elif isinstance(v, str) or isinstance(v, int): |
|
|
|
qry.must.append(Q("term", **{k: v})) |
|
|
|
else: |
|
|
|
raise Exception("Condition value must be int, str or list.") |
|
|
|
logger.debug("OSConnection.delete query: " + json.dumps(qry.to_dict())) |
|
|
|
for _ in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
#print(Search().query(qry).to_dict(), flush=True) |
|
|
|
res = self.os.delete_by_query( |
|
|
|
index=indexName, |
|
|
|
body=Search().query(qry).to_dict(), |
|
|
|
refresh=True) |
|
|
|
return res["deleted"] |
|
|
|
except Exception as e: |
|
|
|
logger.warning("OSConnection.delete got exception: " + str(e)) |
|
|
|
if re.search(r"(timeout|connection)", str(e).lower()): |
|
|
|
time.sleep(3) |
|
|
|
continue |
|
|
|
if re.search(r"(not_found)", str(e), re.IGNORECASE): |
|
|
|
return 0 |
|
|
|
return 0 |
|
|
|
|
|
|
|
""" |
|
|
|
Helper functions for search result |
|
|
|
""" |
|
|
|
|
|
|
|
def getTotal(self, res): |
|
|
|
if isinstance(res["hits"]["total"], type({})): |
|
|
|
return res["hits"]["total"]["value"] |
|
|
|
return res["hits"]["total"] |
|
|
|
|
|
|
|
def getChunkIds(self, res): |
|
|
|
return [d["_id"] for d in res["hits"]["hits"]] |
|
|
|
|
|
|
|
def __getSource(self, res): |
|
|
|
rr = [] |
|
|
|
for d in res["hits"]["hits"]: |
|
|
|
d["_source"]["id"] = d["_id"] |
|
|
|
d["_source"]["_score"] = d["_score"] |
|
|
|
rr.append(d["_source"]) |
|
|
|
return rr |
|
|
|
|
|
|
|
def getFields(self, res, fields: list[str]) -> dict[str, dict]: |
|
|
|
res_fields = {} |
|
|
|
if not fields: |
|
|
|
return {} |
|
|
|
for d in self.__getSource(res): |
|
|
|
m = {n: d.get(n) for n in fields if d.get(n) is not None} |
|
|
|
for n, v in m.items(): |
|
|
|
if isinstance(v, list): |
|
|
|
m[n] = v |
|
|
|
continue |
|
|
|
if not isinstance(v, str): |
|
|
|
m[n] = str(m[n]) |
|
|
|
# if n.find("tks") > 0: |
|
|
|
# m[n] = rmSpace(m[n]) |
|
|
|
|
|
|
|
if m: |
|
|
|
res_fields[d["id"]] = m |
|
|
|
return res_fields |
|
|
|
|
|
|
|
def getHighlight(self, res, keywords: list[str], fieldnm: str): |
|
|
|
ans = {} |
|
|
|
for d in res["hits"]["hits"]: |
|
|
|
hlts = d.get("highlight") |
|
|
|
if not hlts: |
|
|
|
continue |
|
|
|
txt = "...".join([a for a in list(hlts.items())[0][1]]) |
|
|
|
if not is_english(txt.split()): |
|
|
|
ans[d["_id"]] = txt |
|
|
|
continue |
|
|
|
|
|
|
|
txt = d["_source"][fieldnm] |
|
|
|
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE) |
|
|
|
txts = [] |
|
|
|
for t in re.split(r"[.?!;\n]", txt): |
|
|
|
for w in keywords: |
|
|
|
t = re.sub(r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])" % re.escape(w), r"\1<em>\2</em>\3", t, |
|
|
|
flags=re.IGNORECASE | re.MULTILINE) |
|
|
|
if not re.search(r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE): |
|
|
|
continue |
|
|
|
txts.append(t) |
|
|
|
ans[d["_id"]] = "...".join(txts) if txts else "...".join([a for a in list(hlts.items())[0][1]]) |
|
|
|
|
|
|
|
return ans |
|
|
|
|
|
|
|
def getAggregation(self, res, fieldnm: str): |
|
|
|
agg_field = "aggs_" + fieldnm |
|
|
|
if "aggregations" not in res or agg_field not in res["aggregations"]: |
|
|
|
return list() |
|
|
|
bkts = res["aggregations"][agg_field]["buckets"] |
|
|
|
return [(b["key"], b["doc_count"]) for b in bkts] |
|
|
|
|
|
|
|
""" |
|
|
|
SQL |
|
|
|
""" |
|
|
|
|
|
|
|
def sql(self, sql: str, fetch_size: int, format: str): |
|
|
|
logger.debug(f"OSConnection.sql get sql: {sql}") |
|
|
|
sql = re.sub(r"[ `]+", " ", sql) |
|
|
|
sql = sql.replace("%", "") |
|
|
|
replaces = [] |
|
|
|
for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql): |
|
|
|
fld, v = r.group(1), r.group(3) |
|
|
|
match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format( |
|
|
|
fld, rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(v))) |
|
|
|
replaces.append( |
|
|
|
("{}{}'{}'".format( |
|
|
|
r.group(1), |
|
|
|
r.group(2), |
|
|
|
r.group(3)), |
|
|
|
match)) |
|
|
|
|
|
|
|
for p, r in replaces: |
|
|
|
sql = sql.replace(p, r, 1) |
|
|
|
logger.debug(f"OSConnection.sql to os: {sql}") |
|
|
|
|
|
|
|
for i in range(ATTEMPT_TIME): |
|
|
|
try: |
|
|
|
res = self.os.sql.query(body={"query": sql, "fetch_size": fetch_size}, format=format, |
|
|
|
request_timeout="2s") |
|
|
|
return res |
|
|
|
except ConnectionTimeout: |
|
|
|
logger.exception("OSConnection.sql timeout") |
|
|
|
continue |
|
|
|
except Exception: |
|
|
|
logger.exception("OSConnection.sql got exception") |
|
|
|
return None |
|
|
|
logger.error("OSConnection.sql timeout for 3 times!") |
|
|
|
return None |