Browse Source

Optimize Tag Removal Method (#7847)

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
tags/v0.19.1
LUO huan huan 5 months ago
parent
commit
c7db0eaca6
No account linked to committer's email address
1 changed files with 34 additions and 21 deletions
  1. 34
    21
      agentic_reasoning/deep_research.py

+ 34
- 21
agentic_reasoning/deep_research.py View File

@@ -36,17 +36,20 @@ class DeepResearcher:
self._kb_retrieve = kb_retrieve
self._kg_retrieve = kg_retrieve

@staticmethod
def _remove_query_tags(text):
"""Remove query tags from text"""
pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY)
def _remove_tags(text: str, start_tag: str, end_tag: str) -> str:
"""General Tag Removal Method"""
pattern = re.escape(start_tag) + r"(.*?)" + re.escape(end_tag)
return re.sub(pattern, "", text)

@staticmethod
def _remove_result_tags(text):
"""Remove result tags from text"""
pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT)
return re.sub(pattern, "", text)
def _remove_query_tags(text: str) -> str:
"""Remove Query Tags"""
return DeepResearcher._remove_tags(text, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)

@staticmethod
def _remove_result_tags(text: str) -> str:
"""Remove Result Tags"""
return DeepResearcher._remove_tags(text, BEGIN_SEARCH_RESULT, END_SEARCH_RESULT)

def _generate_reasoning(self, msg_history):
"""Generate reasoning steps"""
@@ -95,21 +98,31 @@ class DeepResearcher:
def _retrieve_information(self, search_query):
"""Retrieve information from different sources"""
# 1. Knowledge base retrieval
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []}
kbinfos = []
try:
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []}
except Exception as e:
logging.error(f"Knowledge base retrieval error: {e}")

# 2. Web retrieval (if Tavily API is configured)
if self.prompt_config.get("tavily_api_key"):
tav = Tavily(self.prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(search_query)
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
try:
if self.prompt_config.get("tavily_api_key"):
tav = Tavily(self.prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(search_query)
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
except Exception as e:
logging.error(f"Web retrieval error: {e}")

# 3. Knowledge graph retrieval (if configured)
if self.prompt_config.get("use_kg") and self._kg_retrieve:
ck = self._kg_retrieve(question=search_query)
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
try:
if self.prompt_config.get("use_kg") and self._kg_retrieve:
ck = self._kg_retrieve(question=search_query)
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
except Exception as e:
logging.error(f"Knowledge graph retrieval error: {e}")

return kbinfos

def _update_chunk_info(self, chunk_info, kbinfos):

Loading…
Cancel
Save