| @@ -1,5 +1,5 @@ | |||
| # | |||
| # Copyright 2019 The FATE Authors. All Rights Reserved. | |||
| # Copyright 2019 The RAG Flow Authors. All Rights Reserved. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| @@ -1,5 +1,5 @@ | |||
| # | |||
| # Copyright 2019 The FATE Authors. All Rights Reserved. | |||
| # Copyright 2019 The RAG Flow Authors. All Rights Reserved. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| @@ -1,5 +1,5 @@ | |||
| # | |||
| # Copyright 2019 The FATE Authors. All Rights Reserved. | |||
| # Copyright 2019 The RAG Flow Authors. All Rights Reserved. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| @@ -1,5 +1,5 @@ | |||
| # | |||
| # Copyright 2019 The FATE Authors. All Rights Reserved. | |||
| # Copyright 2019 The RAG Flow Authors. All Rights Reserved. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| @@ -1,8 +1,11 @@ | |||
| # -*- coding: utf-8 -*- | |||
| import json | |||
| import re | |||
| from elasticsearch_dsl import Q, Search, A | |||
| from typing import List, Optional, Tuple, Dict, Union | |||
| from dataclasses import dataclass | |||
| from rag.settings import es_logger | |||
| from rag.utils import rmSpace | |||
| from rag.nlp import huqie, query | |||
| import numpy as np | |||
| @@ -34,30 +37,30 @@ class Dealer: | |||
| group_docs: List[List] = None | |||
| def _vector(self, txt, sim=0.8, topk=10): | |||
| qv = self.emb_mdl.encode_queries(txt) | |||
| return { | |||
| "field": "q_vec", | |||
| "field": "q_%d_vec"%len(qv), | |||
| "k": topk, | |||
| "similarity": sim, | |||
| "num_candidates": 1000, | |||
| "query_vector": self.emb_mdl.encode_queries(txt) | |||
| "query_vector": qv | |||
| } | |||
| def search(self, req, idxnm, tks_num=3): | |||
| keywords = [] | |||
| qst = req.get("question", "") | |||
| bqry, keywords = self.qryr.question(qst) | |||
| if req.get("kb_ids"): | |||
| bqry.filter.append(Q("terms", kb_id=req["kb_ids"])) | |||
| bqry.filter.append(Q("exists", field="q_tks")) | |||
| if req.get("doc_ids"): | |||
| bqry.filter.append(Q("terms", doc_id=req["doc_ids"])) | |||
| bqry.boost = 0.05 | |||
| print(bqry) | |||
| s = Search() | |||
| pg = int(req.get("page", 1)) - 1 | |||
| ps = int(req.get("size", 1000)) | |||
| src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id", | |||
| "image_id", "doc_id", "q_vec"]) | |||
| src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id","img_id", | |||
| "image_id", "doc_id", "q_512_vec", "q_768_vec", | |||
| "q_1024_vec", "q_1536_vec"]) | |||
| s = s.query(bqry)[pg * ps:(pg + 1) * ps] | |||
| s = s.highlight("content_ltks") | |||
| @@ -66,22 +69,24 @@ class Dealer: | |||
| s = s.sort( | |||
| {"create_time": {"order": "desc", "unmapped_type": "date"}}) | |||
| s = s.highlight_options( | |||
| fragment_size=120, | |||
| number_of_fragments=5, | |||
| boundary_scanner_locale="zh-CN", | |||
| boundary_scanner="SENTENCE", | |||
| boundary_chars=",./;:\\!(),。?:!……()——、" | |||
| ) | |||
| if qst: | |||
| s = s.highlight_options( | |||
| fragment_size=120, | |||
| number_of_fragments=5, | |||
| boundary_scanner_locale="zh-CN", | |||
| boundary_scanner="SENTENCE", | |||
| boundary_chars=",./;:\\!(),。?:!……()——、" | |||
| ) | |||
| s = s.to_dict() | |||
| q_vec = [] | |||
| if req.get("vector"): | |||
| s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps) | |||
| s["knn"]["filter"] = bqry.to_dict() | |||
| del s["highlight"] | |||
| if "highlight" in s: del s["highlight"] | |||
| q_vec = s["knn"]["query_vector"] | |||
| es_logger.info("【Q】: {}".format(json.dumps(s))) | |||
| res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src) | |||
| print("TOTAL: ", self.es.getTotal(res)) | |||
| es_logger.info("TOTAL: {}".format(self.es.getTotal(res))) | |||
| if self.es.getTotal(res) == 0 and "knn" in s: | |||
| bqry, _ = self.qryr.question(qst, min_match="10%") | |||
| if req.get("kb_ids"): | |||
| @@ -109,8 +114,7 @@ class Dealer: | |||
| query_vector=q_vec, | |||
| aggregation=aggs, | |||
| highlight=self.getHighlight(res), | |||
| field=self.getFields(res, ["docnm_kwd", "content_ltks", | |||
| "kb_id", "image_id", "doc_id", "q_vec"]), | |||
| field=self.getFields(res, src), | |||
| keywords=list(kwds) | |||
| ) | |||
| @@ -237,14 +241,4 @@ class Dealer: | |||
| return sim | |||
| if __name__ == "__main__": | |||
| from util import es_conn | |||
| SE = Dealer(es_conn.HuEs("infiniflow")) | |||
| qs = [ | |||
| "胡凯", | |||
| "" | |||
| ] | |||
| for q in qs: | |||
| print(">>>>>>>>>>>>>>>>>>>>", q) | |||
| print(SE.search( | |||
| {"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*")) | |||
| @@ -62,7 +62,7 @@ class Dealer: | |||
| return set(res.keys()) | |||
| return res | |||
| fnm = os.path.join(get_project_base_directory(), "res") | |||
| fnm = os.path.join(get_project_base_directory(), "rag/res") | |||
| self.ne, self.df = {}, {} | |||
| try: | |||
| self.ne = json.load(open(os.path.join(fnm, "ner.json"), "r")) | |||
| @@ -1,5 +1,5 @@ | |||
| # | |||
| # Copyright 2019 The FATE Authors. All Rights Reserved. | |||
| # Copyright 2019 The RAG Flow Authors. All Rights Reserved. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| @@ -1,5 +1,5 @@ | |||
| # | |||
| # Copyright 2019 The FATE Authors. All Rights Reserved. | |||
| # Copyright 2019 The RAG Flow Authors. All Rights Reserved. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| @@ -13,6 +13,7 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # | |||
| import datetime | |||
| import json | |||
| import logging | |||
| import os | |||
| @@ -108,17 +109,17 @@ def build(row, cvmdl): | |||
| (int(DOC_MAXIMUM_SIZE / 1024 / 1024))) | |||
| return [] | |||
| res = ELASTICSEARCH.search(Q("term", doc_id=row["id"])) | |||
| if ELASTICSEARCH.getTotal(res) > 0: | |||
| ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]), | |||
| scripts=""" | |||
| if(!ctx._source.kb_id.contains('%s')) | |||
| ctx._source.kb_id.add('%s'); | |||
| """ % (str(row["kb_id"]), str(row["kb_id"])), | |||
| idxnm=search.index_name(row["tenant_id"]) | |||
| ) | |||
| set_progress(row["id"], 1, "Done") | |||
| return [] | |||
| # res = ELASTICSEARCH.search(Q("term", doc_id=row["id"])) | |||
| # if ELASTICSEARCH.getTotal(res) > 0: | |||
| # ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]), | |||
| # scripts=""" | |||
| # if(!ctx._source.kb_id.contains('%s')) | |||
| # ctx._source.kb_id.add('%s'); | |||
| # """ % (str(row["kb_id"]), str(row["kb_id"])), | |||
| # idxnm=search.index_name(row["tenant_id"]) | |||
| # ) | |||
| # set_progress(row["id"], 1, "Done") | |||
| # return [] | |||
| random.seed(time.time()) | |||
| set_progress(row["id"], random.randint(0, 20) / | |||
| @@ -155,8 +156,7 @@ def build(row, cvmdl): | |||
| "doc_id": row["id"], | |||
| "kb_id": [str(row["kb_id"])], | |||
| "docnm_kwd": os.path.split(row["location"])[-1], | |||
| "title_tks": huqie.qie(row["name"]), | |||
| "updated_at": str(row["update_time"]).replace("T", " ")[:19] | |||
| "title_tks": huqie.qie(row["name"]) | |||
| } | |||
| doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"]) | |||
| output_buffer = BytesIO() | |||
| @@ -179,6 +179,7 @@ def build(row, cvmdl): | |||
| MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) | |||
| d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) | |||
| d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |||
| docs.append(d) | |||
| for arr, img in obj.table_chunks: | |||
| @@ -193,6 +194,7 @@ def build(row, cvmdl): | |||
| img.save(output_buffer, format='JPEG') | |||
| MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) | |||
| d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) | |||
| d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |||
| docs.append(d) | |||
| set_progress(row["id"], random.randint(60, 70) / | |||
| 100., "Continue embedding the content.") | |||
| @@ -218,23 +220,11 @@ def embedding(docs, mdl): | |||
| vects = 0.1 * tts + 0.9 * cnts | |||
| assert len(vects) == len(docs) | |||
| for i, d in enumerate(docs): | |||
| d["q_vec"] = vects[i].tolist() | |||
| v = vects[i].tolist() | |||
| d["q_%d_vec"%len(v)] = v | |||
| return tk_count | |||
| def model_instance(tenant_id, llm_type): | |||
| model_config = TenantLLMService.get_api_key(tenant_id, model_type=LLMType.EMBEDDING) | |||
| if not model_config: | |||
| model_config = {"llm_factory": "local", "api_key": "", "llm_name": ""} | |||
| else: model_config = model_config[0].to_dict() | |||
| if llm_type == LLMType.EMBEDDING: | |||
| if model_config["llm_factory"] not in EmbeddingModel: return | |||
| return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"]) | |||
| if llm_type == LLMType.IMAGE2TEXT: | |||
| if model_config["llm_factory"] not in CvModel: return | |||
| return CvModel[model_config.llm_factory](model_config["api_key"], model_config["llm_name"]) | |||
| def main(comm, mod): | |||
| global model | |||
| from rag.llm import HuEmbedding | |||
| @@ -247,12 +237,12 @@ def main(comm, mod): | |||
| tmf = open(tm_fnm, "a+") | |||
| for _, r in rows.iterrows(): | |||
| embd_mdl = model_instance(r["tenant_id"], LLMType.EMBEDDING) | |||
| embd_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.EMBEDDING) | |||
| if not embd_mdl: | |||
| set_progress(r["id"], -1, "Can't find embedding model!") | |||
| cron_logger.error("Tenant({}) can't find embedding model!".format(r["tenant_id"])) | |||
| continue | |||
| cv_mdl = model_instance(r["tenant_id"], LLMType.IMAGE2TEXT) | |||
| cv_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.IMAGE2TEXT) | |||
| st_tm = timer() | |||
| cks = build(r, cv_mdl) | |||
| if not cks: | |||
| @@ -241,6 +241,26 @@ class HuEs: | |||
| es_logger.error("ES search timeout for 3 times!") | |||
| raise Exception("ES search timeout.") | |||
| def get(self, doc_id, idxnm=None): | |||
| for i in range(3): | |||
| try: | |||
| res = self.es.get(index=(self.idxnm if not idxnm else idxnm), | |||
| id=doc_id) | |||
| if str(res.get("timed_out", "")).lower() == "true": | |||
| raise Exception("Es Timeout.") | |||
| return res | |||
| except Exception as e: | |||
| es_logger.error( | |||
| "ES get exception: " + | |||
| str(e) + | |||
| "【Q】:" + | |||
| doc_id) | |||
| if str(e).find("Timeout") > 0: | |||
| continue | |||
| raise e | |||
| es_logger.error("ES search timeout for 3 times!") | |||
| raise Exception("ES search timeout.") | |||
| def updateByQuery(self, q, d): | |||
| ubq = UpdateByQuery(index=self.idxnm).using(self.es).query(q) | |||
| scripts = "" | |||