|
|
|
@@ -67,12 +67,12 @@ class DefaultRerank(Base): |
|
|
|
token_count = 0 |
|
|
|
for _, t in pairs: |
|
|
|
token_count += num_tokens_from_string(t) |
|
|
|
batch_size = 32 |
|
|
|
batch_size = 4096 |
|
|
|
res = [] |
|
|
|
for i in range(0, len(pairs), batch_size): |
|
|
|
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048) |
|
|
|
scores = sigmoid(np.array(scores)).tolist() |
|
|
|
res.extend(scores) |
|
|
|
if isinstance(scores, float): res.append(scores) |
|
|
|
else: res.extend(scores) |
|
|
|
return np.array(res), token_count |
|
|
|
|
|
|
|
|
|
|
|
@@ -124,7 +124,9 @@ class YoudaoRerank(DefaultRerank): |
|
|
|
for i in range(0, len(pairs), batch_size): |
|
|
|
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length) |
|
|
|
scores = sigmoid(np.array(scores)).tolist() |
|
|
|
if isinstance(scores, float): res.append(scores) |
|
|
|
res.extend(scores) |
|
|
|
return np.array(res), token_count |
|
|
|
|
|
|
|
|
|
|
|
|