### What problem does this PR solve? add support for NVIDIA llm ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>tags/v0.9.0
| "model_type": "chat" | "model_type": "chat" | ||||
| } | } | ||||
| ] | ] | ||||
| }, | |||||
| { | |||||
| "name": "NVIDIA", | |||||
| "logo": "", | |||||
| "tags": "LLM,TEXT EMBEDDING, TEXT RE-RANK", | |||||
| "status": "1", | |||||
| "llm": [ | |||||
| { | |||||
| "llm_name": "nvidia/nemotron-4-340b-reward", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "aisingapore/sea-lion-7b-instruct", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "databricks/dbrx-instruct", | |||||
| "tags": "LLM,CHAT,16K", | |||||
| "max_tokens": 16384, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "google/gemma-7b", | |||||
| "tags": "LLM,CHAT,32K", | |||||
| "max_tokens": 32768, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "google/gemma-2b", | |||||
| "tags": "LLM,CHAT,16K", | |||||
| "max_tokens": 16384, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "google/gemma-2-9b-it", | |||||
| "tags": "LLM,CHAT,8K", | |||||
| "max_tokens": 8192, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "google/gemma-2-27b-it", | |||||
| "tags": "LLM,CHAT,8K", | |||||
| "max_tokens": 8192, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "google/recurrentgemma-2b", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "mediatek/breeze-7b-instruct", | |||||
| "tags": "LLM,CHAT,8K", | |||||
| "max_tokens": 8192, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "meta/llama2-70b", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "meta/llama3-8b", | |||||
| "tags": "LLM,CHAT,8K", | |||||
| "max_tokens": 8192, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "meta/llama3-70b", | |||||
| "tags": "LLM,CHAT,8K", | |||||
| "max_tokens": 8192, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "microsoft/phi-3-medium-128k-instruct", | |||||
| "tags": "LLM,CHAT,128K", | |||||
| "max_tokens": 131072, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "microsoft/phi-3-medium-4k-instruct", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "microsoftphi-3-mini-128k-instruct", | |||||
| "tags": "LLM,CHAT,128K", | |||||
| "max_tokens": 131072, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "microsoft/phi-3-mini-4k-instruct", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "microsoft/phi-3-small-128k-instruct", | |||||
| "tags": "LLM,CHAT,128K", | |||||
| "max_tokens": 131072, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "microsoft/phi-3-small-8k-instruct", | |||||
| "tags": "LLM,CHAT,8K", | |||||
| "max_tokens": 8192, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "mistralai/mistral-7b-instruct", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "mistralai/mistral-7b-instruct-v0.3", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "mistralai/mixtral-8x7b-instruct", | |||||
| "tags": "LLM,CHAT,32K", | |||||
| "max_tokens": 32768, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "mistralai/mixtral-8x22b-instruct", | |||||
| "tags": "LLM,CHAT,64K", | |||||
| "max_tokens": 65536, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "mistralai/mistral-large", | |||||
| "tags": "LLM,CHAT,32K", | |||||
| "max_tokens": 32768, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nv-mistralai/mistral-nemo-12b-instruct", | |||||
| "tags": "LLM,CHAT,128K", | |||||
| "max_tokens": 131072, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/llama3-chatqa-1.5-70b", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/llama3-chatqa-1.5-8b", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/nemotron-4-340b-instruct", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "seallms/seallm-7b-v2.5", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "snowflake/arctic", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "upstage/solar-10.7b-instruct", | |||||
| "tags": "LLM,CHAT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "chat" | |||||
| }, | |||||
| { | |||||
| "llm_name": "baai/bge-m3", | |||||
| "tags": "TEXT EMBEDDING,8K", | |||||
| "max_tokens": 8192, | |||||
| "model_type": "embedding" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/embed-qa-4", | |||||
| "tags": "TEXT EMBEDDING,512", | |||||
| "max_tokens": 512, | |||||
| "model_type": "embedding" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/nv-embed-v1", | |||||
| "tags": "TEXT EMBEDDING,32K", | |||||
| "max_tokens": 32768, | |||||
| "model_type": "embedding" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/nv-embedqa-e5-v5", | |||||
| "tags": "TEXT EMBEDDING,512", | |||||
| "max_tokens": 512, | |||||
| "model_type": "embedding" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/nv-embedqa-mistral-7b-v2", | |||||
| "tags": "TEXT EMBEDDING,512", | |||||
| "max_tokens": 512, | |||||
| "model_type": "embedding" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/nv-rerankqa-mistral-4b-v3", | |||||
| "tags": "RE-RANK,512", | |||||
| "max_tokens": 512, | |||||
| "model_type": "rerank" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/rerank-qa-mistral-4b", | |||||
| "tags": "RE-RANK,512", | |||||
| "max_tokens": 512, | |||||
| "model_type": "rerank" | |||||
| }, | |||||
| { | |||||
| "llm_name": "snowflake/arctic-embed-l", | |||||
| "tags": "TEXT EMBEDDING,512", | |||||
| "max_tokens": 512, | |||||
| "model_type": "embedding" | |||||
| }, | |||||
| { | |||||
| "llm_name": "adept/fuyu-8b", | |||||
| "tags": "LLM,IMAGE2TEXT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "image2text" | |||||
| }, | |||||
| { | |||||
| "llm_name": "google/deplot", | |||||
| "tags": "LLM,IMAGE2TEXT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "image2text" | |||||
| }, | |||||
| { | |||||
| "llm_name": "google/paligemma", | |||||
| "tags": "LLM,IMAGE2TEXT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "image2text" | |||||
| }, | |||||
| { | |||||
| "llm_name": "Iiuhaotian/Ilava-v1.6-34b", | |||||
| "tags": "LLM,IMAGE2TEXT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "image2text" | |||||
| }, | |||||
| { | |||||
| "llm_name": "Iiuhaotian/Ilava-v1.6-mistral-7b", | |||||
| "tags": "LLM,IMAGE2TEXT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "image2text" | |||||
| }, | |||||
| { | |||||
| "llm_name": "microsoft/kosmos-2", | |||||
| "tags": "LLM,IMAGE2TEXT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "image2text" | |||||
| }, | |||||
| { | |||||
| "llm_name": "microsoft/phi-3-vision-128k-instruct", | |||||
| "tags": "LLM,IMAGE2TEXT,128K", | |||||
| "max_tokens": 131072, | |||||
| "model_type": "image2text" | |||||
| }, | |||||
| { | |||||
| "llm_name": "nvidia/neva-22b", | |||||
| "tags": "LLM,IMAGE2TEXT,4K", | |||||
| "max_tokens": 4096, | |||||
| "model_type": "image2text" | |||||
| } | |||||
| ] | |||||
| } | } | ||||
| ] | ] | ||||
| } | } |
| "BAAI": DefaultEmbedding, | "BAAI": DefaultEmbedding, | ||||
| "Mistral": MistralEmbed, | "Mistral": MistralEmbed, | ||||
| "Bedrock": BedrockEmbed, | "Bedrock": BedrockEmbed, | ||||
| "Gemini":GeminiEmbed | |||||
| "Gemini":GeminiEmbed, | |||||
| "NVIDIA":NvidiaEmbed | |||||
| } | } | ||||
| "Moonshot": LocalCV, | "Moonshot": LocalCV, | ||||
| 'Gemini':GeminiCV, | 'Gemini':GeminiCV, | ||||
| 'OpenRouter':OpenRouterCV, | 'OpenRouter':OpenRouterCV, | ||||
| "LocalAI":LocalAICV | |||||
| "LocalAI":LocalAICV, | |||||
| "NVIDIA":NvidiaCV | |||||
| } | } | ||||
| "Bedrock": BedrockChat, | "Bedrock": BedrockChat, | ||||
| "Groq": GroqChat, | "Groq": GroqChat, | ||||
| 'OpenRouter':OpenRouterChat, | 'OpenRouter':OpenRouterChat, | ||||
| "StepFun":StepFunChat | |||||
| "StepFun":StepFunChat, | |||||
| "NVIDIA":NvidiaChat | |||||
| } | } | ||||
| "BAAI": DefaultRerank, | "BAAI": DefaultRerank, | ||||
| "Jina": JinaRerank, | "Jina": JinaRerank, | ||||
| "Youdao": YoudaoRerank, | "Youdao": YoudaoRerank, | ||||
| "Xinference": XInferenceRerank | |||||
| "Xinference": XInferenceRerank, | |||||
| "NVIDIA":NvidiaRerank | |||||
| } | } | ||||
| response = requests.request( | response = requests.request( | ||||
| "POST", url=self.base_url, headers=headers, data=payload | "POST", url=self.base_url, headers=headers, data=payload | ||||
| ) | ) | ||||
| print(response, flush=True) | |||||
| response = response.json() | response = response.json() | ||||
| ans = response["choices"][0]["message"]["content"].strip() | ans = response["choices"][0]["message"]["content"].strip() | ||||
| if response["choices"][0]["finish_reason"] == "length": | if response["choices"][0]["finish_reason"] == "length": | ||||
| def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1/chat/completions"): | def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1/chat/completions"): | ||||
| if not base_url: | if not base_url: | ||||
| base_url = "https://api.stepfun.com/v1/chat/completions" | base_url = "https://api.stepfun.com/v1/chat/completions" | ||||
| super().__init__(key, model_name, base_url) | |||||
| super().__init__(key, model_name, base_url) | |||||
| class NvidiaChat(Base): | |||||
| def __init__( | |||||
| self, | |||||
| key, | |||||
| model_name, | |||||
| base_url="https://integrate.api.nvidia.com/v1/chat/completions", | |||||
| ): | |||||
| if not base_url: | |||||
| base_url = "https://integrate.api.nvidia.com/v1/chat/completions" | |||||
| self.base_url = base_url | |||||
| self.model_name = model_name | |||||
| self.api_key = key | |||||
| self.headers = { | |||||
| "accept": "application/json", | |||||
| "Authorization": f"Bearer {self.api_key}", | |||||
| "Content-Type": "application/json", | |||||
| } | |||||
| def chat(self, system, history, gen_conf): | |||||
| if system: | |||||
| history.insert(0, {"role": "system", "content": system}) | |||||
| for k in list(gen_conf.keys()): | |||||
| if k not in ["temperature", "top_p", "max_tokens"]: | |||||
| del gen_conf[k] | |||||
| payload = {"model": self.model_name, "messages": history, **gen_conf} | |||||
| try: | |||||
| response = requests.post( | |||||
| url=self.base_url, headers=self.headers, json=payload | |||||
| ) | |||||
| response = response.json() | |||||
| ans = response["choices"][0]["message"]["content"].strip() | |||||
| return ans, response["usage"]["total_tokens"] | |||||
| except Exception as e: | |||||
| return "**ERROR**: " + str(e), 0 | |||||
| def chat_streamly(self, system, history, gen_conf): | |||||
| if system: | |||||
| history.insert(0, {"role": "system", "content": system}) | |||||
| for k in list(gen_conf.keys()): | |||||
| if k not in ["temperature", "top_p", "max_tokens"]: | |||||
| del gen_conf[k] | |||||
| ans = "" | |||||
| total_tokens = 0 | |||||
| payload = { | |||||
| "model": self.model_name, | |||||
| "messages": history, | |||||
| "stream": True, | |||||
| **gen_conf, | |||||
| } | |||||
| try: | |||||
| response = requests.post( | |||||
| url=self.base_url, | |||||
| headers=self.headers, | |||||
| json=payload, | |||||
| ) | |||||
| for resp in response.text.split("\n\n"): | |||||
| if "choices" not in resp: | |||||
| continue | |||||
| resp = json.loads(resp[6:]) | |||||
| if "content" in resp["choices"][0]["delta"]: | |||||
| text = resp["choices"][0]["delta"]["content"] | |||||
| else: | |||||
| continue | |||||
| ans += text | |||||
| if "usage" in resp: | |||||
| total_tokens = resp["usage"]["total_tokens"] | |||||
| yield ans | |||||
| except Exception as e: | |||||
| yield ans + "\n**ERROR**: " + str(e) | |||||
| yield total_tokens |
| ] | ] | ||||
| class GptV4(Base): | class GptV4(Base): | ||||
| def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"): | def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"): | ||||
| if not base_url: base_url="https://api.openai.com/v1" | if not base_url: base_url="https://api.openai.com/v1" | ||||
| def describe(self, image, max_tokens=1024): | def describe(self, image, max_tokens=1024): | ||||
| return "", 0 | return "", 0 | ||||
| class NvidiaCV(Base): | |||||
| def __init__( | |||||
| self, | |||||
| key, | |||||
| model_name, | |||||
| lang="Chinese", | |||||
| base_url="https://ai.api.nvidia.com/v1/vlm", | |||||
| ): | |||||
| if not base_url: | |||||
| base_url = ("https://ai.api.nvidia.com/v1/vlm",) | |||||
| self.lang = lang | |||||
| factory, llm_name = model_name.split("/") | |||||
| if factory != "liuhaotian": | |||||
| self.base_url = os.path.join(base_url, factory, llm_name) | |||||
| else: | |||||
| self.base_url = os.path.join( | |||||
| base_url, "community", llm_name.replace("-v1.6", "16") | |||||
| ) | |||||
| self.key = key | |||||
| def describe(self, image, max_tokens=1024): | |||||
| b64 = self.image2base64(image) | |||||
| response = requests.post( | |||||
| url=self.base_url, | |||||
| headers={ | |||||
| "accept": "application/json", | |||||
| "content-type": "application/json", | |||||
| "Authorization": f"Bearer {self.key}", | |||||
| }, | |||||
| json={ | |||||
| "messages": self.prompt(b64), | |||||
| "max_tokens": max_tokens, | |||||
| }, | |||||
| ) | |||||
| response = response.json() | |||||
| return ( | |||||
| response["choices"][0]["message"]["content"].strip(), | |||||
| response["usage"]["total_tokens"], | |||||
| ) | |||||
| def prompt(self, b64): | |||||
| return [ | |||||
| { | |||||
| "role": "user", | |||||
| "content": ( | |||||
| "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" | |||||
| if self.lang.lower() == "chinese" | |||||
| else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out." | |||||
| ) | |||||
| + f' <img src="data:image/jpeg;base64,{b64}"/>', | |||||
| } | |||||
| ] | |||||
| def chat_prompt(self, text, b64): | |||||
| return [ | |||||
| { | |||||
| "role": "user", | |||||
| "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>', | |||||
| } | |||||
| ] |
| title="Embedding of single string") | title="Embedding of single string") | ||||
| token_count = num_tokens_from_string(text) | token_count = num_tokens_from_string(text) | ||||
| return np.array(result['embedding']),token_count | return np.array(result['embedding']),token_count | ||||
| class NvidiaEmbed(Base): | |||||
| def __init__( | |||||
| self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings" | |||||
| ): | |||||
| if not base_url: | |||||
| base_url = "https://integrate.api.nvidia.com/v1/embeddings" | |||||
| self.api_key = key | |||||
| self.base_url = base_url | |||||
| self.headers = { | |||||
| "accept": "application/json", | |||||
| "Content-Type": "application/json", | |||||
| "authorization": f"Bearer {self.api_key}", | |||||
| } | |||||
| self.model_name = model_name | |||||
| if model_name == "nvidia/embed-qa-4": | |||||
| self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings" | |||||
| self.model_name = "NV-Embed-QA" | |||||
| if model_name == "snowflake/arctic-embed-l": | |||||
| self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings" | |||||
| def encode(self, texts: list, batch_size=None): | |||||
| payload = { | |||||
| "input": texts, | |||||
| "input_type": "query", | |||||
| "model": self.model_name, | |||||
| "encoding_format": "float", | |||||
| "truncate": "END", | |||||
| } | |||||
| res = requests.post(self.base_url, headers=self.headers, json=payload).json() | |||||
| return ( | |||||
| np.array([d["embedding"] for d in res["data"]]), | |||||
| res["usage"]["total_tokens"], | |||||
| ) | |||||
| def encode_queries(self, text): | |||||
| embds, cnt = self.encode([text]) | |||||
| return np.array(embds[0]), cnt |
| def similarity(self, query: str, texts: list): | def similarity(self, query: str, texts: list): | ||||
| raise NotImplementedError("The LocalAIRerank has not been implement") | raise NotImplementedError("The LocalAIRerank has not been implement") | ||||
| class NvidiaRerank(Base): | |||||
| def __init__( | |||||
| self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/" | |||||
| ): | |||||
| if not base_url: | |||||
| base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/" | |||||
| self.model_name = model_name | |||||
| if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3": | |||||
| self.base_url = os.path.join( | |||||
| base_url, "nv-rerankqa-mistral-4b-v3", "reranking" | |||||
| ) | |||||
| if self.model_name == "nvidia/rerank-qa-mistral-4b": | |||||
| self.base_url = os.path.join(base_url, "reranking") | |||||
| self.model_name = "nv-rerank-qa-mistral-4b:1" | |||||
| self.headers = { | |||||
| "accept": "application/json", | |||||
| "Content-Type": "application/json", | |||||
| "Authorization": f"Bearer {key}", | |||||
| } | |||||
| def similarity(self, query: str, texts: list): | |||||
| token_count = num_tokens_from_string(query) + sum( | |||||
| [num_tokens_from_string(t) for t in texts] | |||||
| ) | |||||
| data = { | |||||
| "model": self.model_name, | |||||
| "query": {"text": query}, | |||||
| "passages": [{"text": text} for text in texts], | |||||
| "truncate": "END", | |||||
| "top_n": len(texts), | |||||
| } | |||||
| res = requests.post(self.base_url, headers=self.headers, json=data).json() | |||||
| return (np.array([d["logit"] for d in res["rankings"]]), token_count) |
| <?xml version="1.0" standalone="no"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg t="1721640561969" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4309" xmlns:xlink="http://www.w3.org/1999/xlink" width="200" height="200"><path d="M381.792 375.392V314.368a269.76 269.76 0 0 1 17.92-0.768h0.16c167.328-5.28 277.024 143.968 277.024 143.968s-118.368 164.32-245.344 164.32a156.576 156.576 0 0 1-49.408-7.904v-185.44c65.184 7.904 78.368 36.576 117.216 101.76l87.04-73.12s-63.648-83.296-170.656-83.296a262.08 262.08 0 0 0-35.136 1.6l1.184-0.096z m0-202.048v91.232l18.08-1.152c232.544-7.904 384.416 190.72 384.416 190.72s-174.08 211.808-355.424 211.808c-15.776 0-31.264-1.504-46.72-4.128v56.544c12.8 1.504 26.016 2.656 38.816 2.656 168.832 0 290.976-86.304 409.312-188.064 19.584 15.84 99.84 53.888 116.48 70.496-112.352 94.208-374.272 169.984-522.784 169.984-14.304 0-27.872-0.768-41.44-2.272v79.52h641.44V173.408z m0 440.576v48.256C225.76 634.272 182.4 471.872 182.4 471.872s75.008-82.944 199.392-96.512v52.768h-0.352c-65.184-7.936-116.48 53.12-116.48 53.12s29.024 102.912 116.864 132.704z m-276.992-148.864s92.32-136.416 277.344-150.752V264.544C177.216 281.152 0.032 454.496 0.032 454.496s100.256 290.208 381.792 316.576v-52.768c-206.496-25.6-276.992-253.28-276.992-253.28z" fill="#76B900" p-id="4310"></path></svg> |
| OpenRouter: 'open-router', | OpenRouter: 'open-router', | ||||
| LocalAI: 'local-ai', | LocalAI: 'local-ai', | ||||
| StepFun: 'stepfun', | StepFun: 'stepfun', | ||||
| NVIDIA:'nvidia' | |||||
| }; | }; | ||||
| export const BedrockRegionList = [ | export const BedrockRegionList = [ |