### What problem does this PR solve? add support for NVIDIA llm ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>tags/v0.9.0
| @@ -1918,6 +1918,290 @@ | |||
| "model_type": "chat" | |||
| } | |||
| ] | |||
| }, | |||
| { | |||
| "name": "NVIDIA", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING, TEXT RE-RANK", | |||
| "status": "1", | |||
| "llm": [ | |||
| { | |||
| "llm_name": "nvidia/nemotron-4-340b-reward", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "aisingapore/sea-lion-7b-instruct", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "databricks/dbrx-instruct", | |||
| "tags": "LLM,CHAT,16K", | |||
| "max_tokens": 16384, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "google/gemma-7b", | |||
| "tags": "LLM,CHAT,32K", | |||
| "max_tokens": 32768, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "google/gemma-2b", | |||
| "tags": "LLM,CHAT,16K", | |||
| "max_tokens": 16384, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "google/gemma-2-9b-it", | |||
| "tags": "LLM,CHAT,8K", | |||
| "max_tokens": 8192, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "google/gemma-2-27b-it", | |||
| "tags": "LLM,CHAT,8K", | |||
| "max_tokens": 8192, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "google/recurrentgemma-2b", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "mediatek/breeze-7b-instruct", | |||
| "tags": "LLM,CHAT,8K", | |||
| "max_tokens": 8192, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "meta/llama2-70b", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "meta/llama3-8b", | |||
| "tags": "LLM,CHAT,8K", | |||
| "max_tokens": 8192, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "meta/llama3-70b", | |||
| "tags": "LLM,CHAT,8K", | |||
| "max_tokens": 8192, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "microsoft/phi-3-medium-128k-instruct", | |||
| "tags": "LLM,CHAT,128K", | |||
| "max_tokens": 131072, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "microsoft/phi-3-medium-4k-instruct", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "microsoftphi-3-mini-128k-instruct", | |||
| "tags": "LLM,CHAT,128K", | |||
| "max_tokens": 131072, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "microsoft/phi-3-mini-4k-instruct", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "microsoft/phi-3-small-128k-instruct", | |||
| "tags": "LLM,CHAT,128K", | |||
| "max_tokens": 131072, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "microsoft/phi-3-small-8k-instruct", | |||
| "tags": "LLM,CHAT,8K", | |||
| "max_tokens": 8192, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "mistralai/mistral-7b-instruct", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "mistralai/mistral-7b-instruct-v0.3", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "mistralai/mixtral-8x7b-instruct", | |||
| "tags": "LLM,CHAT,32K", | |||
| "max_tokens": 32768, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "mistralai/mixtral-8x22b-instruct", | |||
| "tags": "LLM,CHAT,64K", | |||
| "max_tokens": 65536, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "mistralai/mistral-large", | |||
| "tags": "LLM,CHAT,32K", | |||
| "max_tokens": 32768, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "nv-mistralai/mistral-nemo-12b-instruct", | |||
| "tags": "LLM,CHAT,128K", | |||
| "max_tokens": 131072, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/llama3-chatqa-1.5-70b", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/llama3-chatqa-1.5-8b", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/nemotron-4-340b-instruct", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "seallms/seallm-7b-v2.5", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "snowflake/arctic", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "upstage/solar-10.7b-instruct", | |||
| "tags": "LLM,CHAT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "chat" | |||
| }, | |||
| { | |||
| "llm_name": "baai/bge-m3", | |||
| "tags": "TEXT EMBEDDING,8K", | |||
| "max_tokens": 8192, | |||
| "model_type": "embedding" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/embed-qa-4", | |||
| "tags": "TEXT EMBEDDING,512", | |||
| "max_tokens": 512, | |||
| "model_type": "embedding" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/nv-embed-v1", | |||
| "tags": "TEXT EMBEDDING,32K", | |||
| "max_tokens": 32768, | |||
| "model_type": "embedding" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/nv-embedqa-e5-v5", | |||
| "tags": "TEXT EMBEDDING,512", | |||
| "max_tokens": 512, | |||
| "model_type": "embedding" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/nv-embedqa-mistral-7b-v2", | |||
| "tags": "TEXT EMBEDDING,512", | |||
| "max_tokens": 512, | |||
| "model_type": "embedding" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/nv-rerankqa-mistral-4b-v3", | |||
| "tags": "RE-RANK,512", | |||
| "max_tokens": 512, | |||
| "model_type": "rerank" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/rerank-qa-mistral-4b", | |||
| "tags": "RE-RANK,512", | |||
| "max_tokens": 512, | |||
| "model_type": "rerank" | |||
| }, | |||
| { | |||
| "llm_name": "snowflake/arctic-embed-l", | |||
| "tags": "TEXT EMBEDDING,512", | |||
| "max_tokens": 512, | |||
| "model_type": "embedding" | |||
| }, | |||
| { | |||
| "llm_name": "adept/fuyu-8b", | |||
| "tags": "LLM,IMAGE2TEXT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "image2text" | |||
| }, | |||
| { | |||
| "llm_name": "google/deplot", | |||
| "tags": "LLM,IMAGE2TEXT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "image2text" | |||
| }, | |||
| { | |||
| "llm_name": "google/paligemma", | |||
| "tags": "LLM,IMAGE2TEXT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "image2text" | |||
| }, | |||
| { | |||
| "llm_name": "Iiuhaotian/Ilava-v1.6-34b", | |||
| "tags": "LLM,IMAGE2TEXT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "image2text" | |||
| }, | |||
| { | |||
| "llm_name": "Iiuhaotian/Ilava-v1.6-mistral-7b", | |||
| "tags": "LLM,IMAGE2TEXT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "image2text" | |||
| }, | |||
| { | |||
| "llm_name": "microsoft/kosmos-2", | |||
| "tags": "LLM,IMAGE2TEXT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "image2text" | |||
| }, | |||
| { | |||
| "llm_name": "microsoft/phi-3-vision-128k-instruct", | |||
| "tags": "LLM,IMAGE2TEXT,128K", | |||
| "max_tokens": 131072, | |||
| "model_type": "image2text" | |||
| }, | |||
| { | |||
| "llm_name": "nvidia/neva-22b", | |||
| "tags": "LLM,IMAGE2TEXT,4K", | |||
| "max_tokens": 4096, | |||
| "model_type": "image2text" | |||
| } | |||
| ] | |||
| } | |||
| ] | |||
| } | |||
| @@ -34,7 +34,8 @@ EmbeddingModel = { | |||
| "BAAI": DefaultEmbedding, | |||
| "Mistral": MistralEmbed, | |||
| "Bedrock": BedrockEmbed, | |||
| "Gemini":GeminiEmbed | |||
| "Gemini":GeminiEmbed, | |||
| "NVIDIA":NvidiaEmbed | |||
| } | |||
| @@ -48,7 +49,8 @@ CvModel = { | |||
| "Moonshot": LocalCV, | |||
| 'Gemini':GeminiCV, | |||
| 'OpenRouter':OpenRouterCV, | |||
| "LocalAI":LocalAICV | |||
| "LocalAI":LocalAICV, | |||
| "NVIDIA":NvidiaCV | |||
| } | |||
| @@ -71,7 +73,8 @@ ChatModel = { | |||
| "Bedrock": BedrockChat, | |||
| "Groq": GroqChat, | |||
| 'OpenRouter':OpenRouterChat, | |||
| "StepFun":StepFunChat | |||
| "StepFun":StepFunChat, | |||
| "NVIDIA":NvidiaChat | |||
| } | |||
| @@ -79,7 +82,8 @@ RerankModel = { | |||
| "BAAI": DefaultRerank, | |||
| "Jina": JinaRerank, | |||
| "Youdao": YoudaoRerank, | |||
| "Xinference": XInferenceRerank | |||
| "Xinference": XInferenceRerank, | |||
| "NVIDIA":NvidiaRerank | |||
| } | |||
| @@ -581,7 +581,6 @@ class MiniMaxChat(Base): | |||
| response = requests.request( | |||
| "POST", url=self.base_url, headers=headers, data=payload | |||
| ) | |||
| print(response, flush=True) | |||
| response = response.json() | |||
| ans = response["choices"][0]["message"]["content"].strip() | |||
| if response["choices"][0]["finish_reason"] == "length": | |||
| @@ -902,4 +901,79 @@ class StepFunChat(Base): | |||
| def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1/chat/completions"): | |||
| if not base_url: | |||
| base_url = "https://api.stepfun.com/v1/chat/completions" | |||
| super().__init__(key, model_name, base_url) | |||
| super().__init__(key, model_name, base_url) | |||
| class NvidiaChat(Base): | |||
| def __init__( | |||
| self, | |||
| key, | |||
| model_name, | |||
| base_url="https://integrate.api.nvidia.com/v1/chat/completions", | |||
| ): | |||
| if not base_url: | |||
| base_url = "https://integrate.api.nvidia.com/v1/chat/completions" | |||
| self.base_url = base_url | |||
| self.model_name = model_name | |||
| self.api_key = key | |||
| self.headers = { | |||
| "accept": "application/json", | |||
| "Authorization": f"Bearer {self.api_key}", | |||
| "Content-Type": "application/json", | |||
| } | |||
| def chat(self, system, history, gen_conf): | |||
| if system: | |||
| history.insert(0, {"role": "system", "content": system}) | |||
| for k in list(gen_conf.keys()): | |||
| if k not in ["temperature", "top_p", "max_tokens"]: | |||
| del gen_conf[k] | |||
| payload = {"model": self.model_name, "messages": history, **gen_conf} | |||
| try: | |||
| response = requests.post( | |||
| url=self.base_url, headers=self.headers, json=payload | |||
| ) | |||
| response = response.json() | |||
| ans = response["choices"][0]["message"]["content"].strip() | |||
| return ans, response["usage"]["total_tokens"] | |||
| except Exception as e: | |||
| return "**ERROR**: " + str(e), 0 | |||
| def chat_streamly(self, system, history, gen_conf): | |||
| if system: | |||
| history.insert(0, {"role": "system", "content": system}) | |||
| for k in list(gen_conf.keys()): | |||
| if k not in ["temperature", "top_p", "max_tokens"]: | |||
| del gen_conf[k] | |||
| ans = "" | |||
| total_tokens = 0 | |||
| payload = { | |||
| "model": self.model_name, | |||
| "messages": history, | |||
| "stream": True, | |||
| **gen_conf, | |||
| } | |||
| try: | |||
| response = requests.post( | |||
| url=self.base_url, | |||
| headers=self.headers, | |||
| json=payload, | |||
| ) | |||
| for resp in response.text.split("\n\n"): | |||
| if "choices" not in resp: | |||
| continue | |||
| resp = json.loads(resp[6:]) | |||
| if "content" in resp["choices"][0]["delta"]: | |||
| text = resp["choices"][0]["delta"]["content"] | |||
| else: | |||
| continue | |||
| ans += text | |||
| if "usage" in resp: | |||
| total_tokens = resp["usage"]["total_tokens"] | |||
| yield ans | |||
| except Exception as e: | |||
| yield ans + "\n**ERROR**: " + str(e) | |||
| yield total_tokens | |||
| @@ -137,7 +137,6 @@ class Base(ABC): | |||
| ] | |||
| class GptV4(Base): | |||
| def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"): | |||
| if not base_url: base_url="https://api.openai.com/v1" | |||
| @@ -619,3 +618,65 @@ class LocalCV(Base): | |||
| def describe(self, image, max_tokens=1024): | |||
| return "", 0 | |||
| class NvidiaCV(Base): | |||
| def __init__( | |||
| self, | |||
| key, | |||
| model_name, | |||
| lang="Chinese", | |||
| base_url="https://ai.api.nvidia.com/v1/vlm", | |||
| ): | |||
| if not base_url: | |||
| base_url = ("https://ai.api.nvidia.com/v1/vlm",) | |||
| self.lang = lang | |||
| factory, llm_name = model_name.split("/") | |||
| if factory != "liuhaotian": | |||
| self.base_url = os.path.join(base_url, factory, llm_name) | |||
| else: | |||
| self.base_url = os.path.join( | |||
| base_url, "community", llm_name.replace("-v1.6", "16") | |||
| ) | |||
| self.key = key | |||
| def describe(self, image, max_tokens=1024): | |||
| b64 = self.image2base64(image) | |||
| response = requests.post( | |||
| url=self.base_url, | |||
| headers={ | |||
| "accept": "application/json", | |||
| "content-type": "application/json", | |||
| "Authorization": f"Bearer {self.key}", | |||
| }, | |||
| json={ | |||
| "messages": self.prompt(b64), | |||
| "max_tokens": max_tokens, | |||
| }, | |||
| ) | |||
| response = response.json() | |||
| return ( | |||
| response["choices"][0]["message"]["content"].strip(), | |||
| response["usage"]["total_tokens"], | |||
| ) | |||
| def prompt(self, b64): | |||
| return [ | |||
| { | |||
| "role": "user", | |||
| "content": ( | |||
| "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" | |||
| if self.lang.lower() == "chinese" | |||
| else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out." | |||
| ) | |||
| + f' <img src="data:image/jpeg;base64,{b64}"/>', | |||
| } | |||
| ] | |||
| def chat_prompt(self, text, b64): | |||
| return [ | |||
| { | |||
| "role": "user", | |||
| "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>', | |||
| } | |||
| ] | |||
| @@ -462,3 +462,41 @@ class GeminiEmbed(Base): | |||
| title="Embedding of single string") | |||
| token_count = num_tokens_from_string(text) | |||
| return np.array(result['embedding']),token_count | |||
| class NvidiaEmbed(Base): | |||
| def __init__( | |||
| self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings" | |||
| ): | |||
| if not base_url: | |||
| base_url = "https://integrate.api.nvidia.com/v1/embeddings" | |||
| self.api_key = key | |||
| self.base_url = base_url | |||
| self.headers = { | |||
| "accept": "application/json", | |||
| "Content-Type": "application/json", | |||
| "authorization": f"Bearer {self.api_key}", | |||
| } | |||
| self.model_name = model_name | |||
| if model_name == "nvidia/embed-qa-4": | |||
| self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings" | |||
| self.model_name = "NV-Embed-QA" | |||
| if model_name == "snowflake/arctic-embed-l": | |||
| self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings" | |||
| def encode(self, texts: list, batch_size=None): | |||
| payload = { | |||
| "input": texts, | |||
| "input_type": "query", | |||
| "model": self.model_name, | |||
| "encoding_format": "float", | |||
| "truncate": "END", | |||
| } | |||
| res = requests.post(self.base_url, headers=self.headers, json=payload).json() | |||
| return ( | |||
| np.array([d["embedding"] for d in res["data"]]), | |||
| res["usage"]["total_tokens"], | |||
| ) | |||
| def encode_queries(self, text): | |||
| embds, cnt = self.encode([text]) | |||
| return np.array(embds[0]), cnt | |||
| @@ -164,3 +164,41 @@ class LocalAIRerank(Base): | |||
| def similarity(self, query: str, texts: list): | |||
| raise NotImplementedError("The LocalAIRerank has not been implement") | |||
| class NvidiaRerank(Base): | |||
| def __init__( | |||
| self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/" | |||
| ): | |||
| if not base_url: | |||
| base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/" | |||
| self.model_name = model_name | |||
| if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3": | |||
| self.base_url = os.path.join( | |||
| base_url, "nv-rerankqa-mistral-4b-v3", "reranking" | |||
| ) | |||
| if self.model_name == "nvidia/rerank-qa-mistral-4b": | |||
| self.base_url = os.path.join(base_url, "reranking") | |||
| self.model_name = "nv-rerank-qa-mistral-4b:1" | |||
| self.headers = { | |||
| "accept": "application/json", | |||
| "Content-Type": "application/json", | |||
| "Authorization": f"Bearer {key}", | |||
| } | |||
| def similarity(self, query: str, texts: list): | |||
| token_count = num_tokens_from_string(query) + sum( | |||
| [num_tokens_from_string(t) for t in texts] | |||
| ) | |||
| data = { | |||
| "model": self.model_name, | |||
| "query": {"text": query}, | |||
| "passages": [{"text": text} for text in texts], | |||
| "truncate": "END", | |||
| "top_n": len(texts), | |||
| } | |||
| res = requests.post(self.base_url, headers=self.headers, json=data).json() | |||
| return (np.array([d["logit"] for d in res["rankings"]]), token_count) | |||
| @@ -0,0 +1 @@ | |||
| <?xml version="1.0" standalone="no"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg t="1721640561969" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4309" xmlns:xlink="http://www.w3.org/1999/xlink" width="200" height="200"><path d="M381.792 375.392V314.368a269.76 269.76 0 0 1 17.92-0.768h0.16c167.328-5.28 277.024 143.968 277.024 143.968s-118.368 164.32-245.344 164.32a156.576 156.576 0 0 1-49.408-7.904v-185.44c65.184 7.904 78.368 36.576 117.216 101.76l87.04-73.12s-63.648-83.296-170.656-83.296a262.08 262.08 0 0 0-35.136 1.6l1.184-0.096z m0-202.048v91.232l18.08-1.152c232.544-7.904 384.416 190.72 384.416 190.72s-174.08 211.808-355.424 211.808c-15.776 0-31.264-1.504-46.72-4.128v56.544c12.8 1.504 26.016 2.656 38.816 2.656 168.832 0 290.976-86.304 409.312-188.064 19.584 15.84 99.84 53.888 116.48 70.496-112.352 94.208-374.272 169.984-522.784 169.984-14.304 0-27.872-0.768-41.44-2.272v79.52h641.44V173.408z m0 440.576v48.256C225.76 634.272 182.4 471.872 182.4 471.872s75.008-82.944 199.392-96.512v52.768h-0.352c-65.184-7.936-116.48 53.12-116.48 53.12s29.024 102.912 116.864 132.704z m-276.992-148.864s92.32-136.416 277.344-150.752V264.544C177.216 281.152 0.032 454.496 0.032 454.496s100.256 290.208 381.792 316.576v-52.768c-206.496-25.6-276.992-253.28-276.992-253.28z" fill="#76B900" p-id="4310"></path></svg> | |||
| @@ -20,6 +20,7 @@ export const IconMap = { | |||
| OpenRouter: 'open-router', | |||
| LocalAI: 'local-ai', | |||
| StepFun: 'stepfun', | |||
| NVIDIA:'nvidia' | |||
| }; | |||
| export const BedrockRegionList = [ | |||