Browse Source

refine mindmap prompt (#1808)

### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
tags/v0.9.0
Kevin Hu 1 year ago
parent
commit
a5c03ccd4c
No account linked to committer's email address

+ 2
- 2
api/db/services/document_service.py View File

@@ -142,7 +142,7 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def get_unfinished_docs(cls):
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg]
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg, cls.model.run]
docs = cls.model.select(*fields) \
.where(
cls.model.status == StatusEnum.VALID.value,
@@ -311,7 +311,7 @@ class DocumentService(CommonService):
prg = 0
finished = True
bad = 0
status = TaskStatus.RUNNING.value
status = d["run"]#TaskStatus.RUNNING.value
for t in tsks:
if 0 <= t.progress < 1:
finished = False

+ 0
- 6
conf/llm_factories.json View File

@@ -92,12 +92,6 @@
"max_tokens": 32768,
"model_type": "chat"
},
{
"llm_name": "qwen-max-1201",
"tags": "LLM,CHAT,6K",
"max_tokens": 5899,
"model_type": "chat"
},
{
"llm_name": "text-embedding-v2",
"tags": "TEXT EMBEDDING,2K",

+ 0
- 1
graphrag/mind_map_prompt.py View File

@@ -22,7 +22,6 @@ MIND_MAP_EXTRACTION_PROMPT = """
3. If the subject matter is really complex, split them into sub-sections.

- Output requirement:
- Always try to maximize the number of sub-sections.
- In language of
- MUST IN FORMAT OF MARKDOWN

+ 3
- 2
rag/app/knowledge_graph.py View File

@@ -13,7 +13,8 @@ def chunk(filename, binary, tenant_id, from_page=0, to_page=100000,
eng = lang.lower() == "english"

parser_config["layout_recognize"] = False
sections = naive.chunk(filename, binary, from_page=from_page, to_page=to_page, section_only=True, callback=callback ,parser_config=parser_config)
sections = naive.chunk(filename, binary, from_page=from_page, to_page=to_page, section_only=True,
parser_config=parser_config, callback=callback)
chunks = build_knowlege_graph_chunks(tenant_id, sections, callback,
parser_config.get("entity_types", ["organization", "person", "location", "event", "time"])
)
@@ -27,4 +28,4 @@ def chunk(filename, binary, tenant_id, from_page=0, to_page=100000,
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
chunks.extend(tokenize_chunks(sections, doc, eng))

return chunks
return chunks

Loading…
Cancel
Save