| @@ -50,7 +50,7 @@ platform to empower your business with AI. | |||
| # Release Notification | |||
| **Star us on GitHub, and be notified for a new releases instantly!** | |||
|  | |||
|  | |||
| # Installation | |||
| ## System Requirements | |||
| @@ -274,6 +274,8 @@ def use_sql(question, field_map, tenant_id, chat_mdl): | |||
| return retrievaler.sql_retrieval(sql, format="json"), sql | |||
| tbl, sql = get_table() | |||
| if tbl is None: | |||
| return None, None | |||
| if tbl.get("error") and tried_times <= 2: | |||
| user_promt = """ | |||
| 表名:{}; | |||
| @@ -107,7 +107,7 @@ def list(): | |||
| llms = LLMService.get_all() | |||
| llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value] | |||
| for m in llms: | |||
| m["available"] = m["fid"] in facts | |||
| m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" | |||
| res = {} | |||
| for m in llms: | |||
| @@ -227,7 +227,7 @@ def init_llm_factory(): | |||
| "model_type": LLMType.CHAT.value | |||
| }, { | |||
| "fid": factory_infos[3]["name"], | |||
| "llm_name": "flag-enbedding", | |||
| "llm_name": "flag-embedding", | |||
| "tags": "TEXT EMBEDDING,", | |||
| "max_tokens": 128 * 1000, | |||
| "model_type": LLMType.EMBEDDING.value | |||
| @@ -241,7 +241,7 @@ def init_llm_factory(): | |||
| "model_type": LLMType.CHAT.value | |||
| }, { | |||
| "fid": factory_infos[4]["name"], | |||
| "llm_name": "flag-enbedding", | |||
| "llm_name": "flag-embedding", | |||
| "tags": "TEXT EMBEDDING,", | |||
| "max_tokens": 128 * 1000, | |||
| "model_type": LLMType.EMBEDDING.value | |||
| @@ -72,13 +72,13 @@ default_llm = { | |||
| }, | |||
| "Local": { | |||
| "chat_model": "qwen-14B-chat", | |||
| "embedding_model": "flag-enbedding", | |||
| "embedding_model": "flag-embedding", | |||
| "image2text_model": "", | |||
| "asr_model": "", | |||
| }, | |||
| "Moonshot": { | |||
| "chat_model": "moonshot-v1-8k", | |||
| "embedding_model": "flag-enbedding", | |||
| "embedding_model": "", | |||
| "image2text_model": "", | |||
| "asr_model": "", | |||
| } | |||
| @@ -247,7 +247,7 @@ class HuParser: | |||
| b["SP"] = ii | |||
| def __ocr(self, pagenum, img, chars, ZM=3): | |||
| bxs = self.ocr(np.array(img)) | |||
| bxs = self.ocr.detect(np.array(img)) | |||
| if not bxs: | |||
| self.boxes.append([]) | |||
| return | |||
| @@ -278,8 +278,10 @@ class HuParser: | |||
| for b in bxs: | |||
| if not b["text"]: | |||
| b["text"] = b["txt"] | |||
| left, right, top, bott = b["x0"]*ZM, b["x1"]*ZM, b["top"]*ZM, b["bottom"]*ZM | |||
| b["text"] = self.ocr.recognize(np.array(img), np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32)) | |||
| del b["txt"] | |||
| bxs = [b for b in bxs if b["text"]] | |||
| if self.mean_height[-1] == 0: | |||
| self.mean_height[-1] = np.median([b["bottom"] - b["top"] | |||
| for b in bxs]) | |||
| @@ -69,7 +69,7 @@ def load_model(model_dir, nm): | |||
| options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL | |||
| options.intra_op_num_threads = 2 | |||
| options.inter_op_num_threads = 2 | |||
| if ort.get_device() == "GPU": | |||
| if False and ort.get_device() == "GPU": | |||
| sess = ort.InferenceSession(model_file_path, options=options, providers=['CUDAExecutionProvider']) | |||
| else: | |||
| sess = ort.InferenceSession(model_file_path, options=options, providers=['CPUExecutionProvider']) | |||
| @@ -366,7 +366,7 @@ class TextDetector(object): | |||
| 'keep_keys': ['image', 'shape'] | |||
| } | |||
| }] | |||
| postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.6, "max_candidates": 1000, | |||
| postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, | |||
| "unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"} | |||
| self.postprocess_op = build_post_process(postprocess_params) | |||
| @@ -534,6 +534,34 @@ class OCR(object): | |||
| break | |||
| return _boxes | |||
| def detect(self, img): | |||
| time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0} | |||
| if img is None: | |||
| return None, None, time_dict | |||
| start = time.time() | |||
| dt_boxes, elapse = self.text_detector(img) | |||
| time_dict['det'] = elapse | |||
| if dt_boxes is None: | |||
| end = time.time() | |||
| time_dict['all'] = end - start | |||
| return None, None, time_dict | |||
| else: | |||
| cron_logger.debug("dt_boxes num : {}, elapsed : {}".format( | |||
| len(dt_boxes), elapse)) | |||
| return zip(self.sorted_boxes(dt_boxes), [("",0) for _ in range(len(dt_boxes))]) | |||
| def recognize(self, ori_im, box): | |||
| img_crop = self.get_rotate_crop_image(ori_im, box) | |||
| rec_res, elapse = self.text_recognizer([img_crop]) | |||
| text, score = rec_res[0] | |||
| if score < self.drop_score:return "" | |||
| return text | |||
| def __call__(self, img, cls=True): | |||
| time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0} | |||
| @@ -562,6 +590,7 @@ class OCR(object): | |||
| img_crop_list.append(img_crop) | |||
| rec_res, elapse = self.text_recognizer(img_crop_list) | |||
| time_dict['rec'] = elapse | |||
| cron_logger.debug("rec_res num : {}, elapsed : {}".format( | |||
| len(rec_res), elapse)) | |||
| @@ -575,6 +604,7 @@ class OCR(object): | |||
| end = time.time() | |||
| time_dict['all'] = end - start | |||
| #for bno in range(len(img_crop_list)): | |||
| # print(f"{bno}, {rec_res[bno]}") | |||
| @@ -41,7 +41,7 @@ class Recognizer(object): | |||
| if not os.path.exists(model_file_path): | |||
| raise ValueError("not find model file path {}".format( | |||
| model_file_path)) | |||
| if ort.get_device() == "GPU": | |||
| if False and ort.get_device() == "GPU": | |||
| options = ort.SessionOptions() | |||
| options.enable_cpu_mem_arena = False | |||
| self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')]) | |||
| @@ -2,7 +2,7 @@ import copy | |||
| import re | |||
| from api.db import ParserType | |||
| from rag.nlp import huqie, tokenize, tokenize_table, add_positions | |||
| from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency | |||
| from deepdoc.parser import PdfParser | |||
| from rag.utils import num_tokens_from_string | |||
| @@ -14,6 +14,8 @@ class Pdf(PdfParser): | |||
| def __call__(self, filename, binary=None, from_page=0, | |||
| to_page=100000, zoomin=3, callback=None): | |||
| from timeit import default_timer as timer | |||
| start = timer() | |||
| callback(msg="OCR is running...") | |||
| self.__images__( | |||
| filename if not binary else binary, | |||
| @@ -23,19 +25,38 @@ class Pdf(PdfParser): | |||
| callback | |||
| ) | |||
| callback(msg="OCR finished.") | |||
| #for bb in self.boxes: | |||
| # for b in bb: | |||
| # print(b) | |||
| print("OCR:", timer()-start) | |||
| def get_position(bx): | |||
| poss = [] | |||
| pn = bx["page_number"] | |||
| top = bx["top"] - self.page_cum_height[pn - 1] | |||
| bott = bx["bottom"] - self.page_cum_height[pn - 1] | |||
| poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn-1].size[1]/zoomin))) | |||
| while bott * zoomin > self.page_images[pn - 1].size[1]: | |||
| bott -= self.page_images[pn- 1].size[1] / zoomin | |||
| top = 0 | |||
| pn += 1 | |||
| poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / zoomin))) | |||
| return poss | |||
| def tag(pn, left, right, top, bottom): | |||
| return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \ | |||
| .format(pn, left, right, top, bottom) | |||
| from timeit import default_timer as timer | |||
| start = timer() | |||
| self._layouts_rec(zoomin) | |||
| callback(0.65, "Layout analysis finished.") | |||
| print("paddle layouts:", timer() - start) | |||
| self._table_transformer_job(zoomin) | |||
| callback(0.67, "Table analysis finished.") | |||
| self._text_merge() | |||
| self._concat_downward(concat_between_pages=False) | |||
| tbls = self._extract_table_figure(True, zoomin, True, True) | |||
| self._naive_vertical_merge() | |||
| self._filter_forpages() | |||
| callback(0.68, "Text merging finished") | |||
| tbls = self._extract_table_figure(True, zoomin, True, True) | |||
| # clean mess | |||
| for b in self.boxes: | |||
| @@ -44,25 +65,33 @@ class Pdf(PdfParser): | |||
| # merge chunks with the same bullets | |||
| self._merge_with_same_bullet() | |||
| # merge title with decent chunk | |||
| i = 0 | |||
| while i + 1 < len(self.boxes): | |||
| b = self.boxes[i] | |||
| if b.get("layoutno","").find("title") < 0: | |||
| i += 1 | |||
| continue | |||
| b_ = self.boxes[i + 1] | |||
| b_["text"] = b["text"] + "\n" + b_["text"] | |||
| b_["x0"] = min(b["x0"], b_["x0"]) | |||
| b_["x1"] = max(b["x1"], b_["x1"]) | |||
| b_["top"] = b["top"] | |||
| self.boxes.pop(i) | |||
| callback(0.8, "Parsing finished") | |||
| for b in self.boxes: print(b["text"], b.get("layoutno")) | |||
| print(tbls) | |||
| return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls | |||
| # set pivot using the most frequent type of title, | |||
| # then merge between 2 pivot | |||
| bull = bullets_category([b["text"] for b in self.boxes]) | |||
| most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes]) | |||
| assert len(self.boxes) == len(levels) | |||
| sec_ids = [] | |||
| sid = 0 | |||
| for i, lvl in enumerate(levels): | |||
| if lvl <= most_level: sid += 1 | |||
| sec_ids.append(sid) | |||
| #print(lvl, self.boxes[i]["text"], most_level) | |||
| sections = [(b["text"], sec_ids[i], get_position(b)) for i, b in enumerate(self.boxes)] | |||
| for (img, rows), poss in tbls: | |||
| sections.append((rows[0], -1, [(p[0]+1, p[1], p[2], p[3], p[4]) for p in poss])) | |||
| chunks = [] | |||
| last_sid = -2 | |||
| for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])): | |||
| poss = "\t".join([tag(*pos) for pos in poss]) | |||
| if sec_id == last_sid or sec_id == -1: | |||
| if chunks: | |||
| chunks[-1] += "\n" + txt + poss | |||
| continue | |||
| chunks.append(txt + poss) | |||
| if sec_id >-1: last_sid = sec_id | |||
| return chunks | |||
| def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs): | |||
| @@ -73,7 +102,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| if re.search(r"\.pdf$", filename, re.IGNORECASE): | |||
| pdf_parser = Pdf() | |||
| cks, tbls = pdf_parser(filename if not binary else binary, | |||
| cks = pdf_parser(filename if not binary else binary, | |||
| from_page=from_page, to_page=to_page, callback=callback) | |||
| else: raise NotImplementedError("file type not supported yet(pdf supported)") | |||
| doc = { | |||
| @@ -84,16 +113,15 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| # is it English | |||
| eng = lang.lower() == "english"#pdf_parser.is_english | |||
| res = tokenize_table(tbls, doc, eng) | |||
| i = 0 | |||
| chunk = [] | |||
| tk_cnt = 0 | |||
| res = [] | |||
| def add_chunk(): | |||
| nonlocal chunk, res, doc, pdf_parser, tk_cnt | |||
| d = copy.deepcopy(doc) | |||
| ck = "\n".join(chunk) | |||
| tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english) | |||
| tokenize(d, pdf_parser.remove_tag(ck), eng) | |||
| d["image"], poss = pdf_parser.crop(ck, need_position=True) | |||
| add_positions(d, poss) | |||
| res.append(d) | |||
| @@ -101,7 +129,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| tk_cnt = 0 | |||
| while i < len(cks): | |||
| if tk_cnt > 128: add_chunk() | |||
| if tk_cnt > 256: add_chunk() | |||
| txt = cks[i] | |||
| txt_ = pdf_parser.remove_tag(txt) | |||
| i += 1 | |||
| @@ -109,6 +137,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| chunk.append(txt) | |||
| tk_cnt += cnt | |||
| if chunk: add_chunk() | |||
| for i, d in enumerate(res): | |||
| print(d) | |||
| # d["image"].save(f"./logs/{i}.jpg") | |||
| @@ -117,6 +146,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| if __name__ == "__main__": | |||
| import sys | |||
| def dummy(a, b): | |||
| def dummy(prog=None, msg=""): | |||
| pass | |||
| chunk(sys.argv[1], callback=dummy) | |||
| @@ -100,7 +100,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| print("--", ck) | |||
| d = copy.deepcopy(doc) | |||
| if pdf_parser: | |||
| d["image"], poss = pdf_parser.crop(ck, need_position=True) | |||
| try: | |||
| d["image"], poss = pdf_parser.crop(ck, need_position=True) | |||
| except Exception as e: | |||
| continue | |||
| add_positions(d, poss) | |||
| ck = pdf_parser.remove_tag(ck) | |||
| tokenize(d, ck, eng) | |||
| @@ -1,4 +1,6 @@ | |||
| import random | |||
| from collections import Counter | |||
| from rag.utils import num_tokens_from_string | |||
| from . import huqie | |||
| from nltk import word_tokenize | |||
| @@ -175,6 +177,36 @@ def make_colon_as_title(sections): | |||
| i += 1 | |||
| def title_frequency(bull, sections): | |||
| bullets_size = len(BULLET_PATTERN[bull]) | |||
| levels = [bullets_size+1 for _ in range(len(sections))] | |||
| if not sections or bull < 0: | |||
| return bullets_size+1, levels | |||
| for i, (txt, layout) in enumerate(sections): | |||
| for j, p in enumerate(BULLET_PATTERN[bull]): | |||
| if re.match(p, txt.strip()): | |||
| levels[i] = j | |||
| break | |||
| else: | |||
| if re.search(r"(title|head)", layout) and not not_title(txt.split("@")[0]): | |||
| levels[i] = bullets_size | |||
| most_level = bullets_size+1 | |||
| for l, c in sorted(Counter(levels).items(), key=lambda x:x[1]*-1): | |||
| if l <= bullets_size: | |||
| most_level = l | |||
| break | |||
| return most_level, levels | |||
| def not_title(txt): | |||
| if re.match(r"第[零一二三四五六七八九十百0-9]+条", txt): | |||
| return False | |||
| if len(txt.split(" ")) > 12 or (txt.find(" ") < 0 and len(txt) >= 32): | |||
| return True | |||
| return re.search(r"[,;,。;!!]", txt) | |||
| def hierarchical_merge(bull, sections, depth): | |||
| if not sections or bull < 0: | |||
| return [] | |||
| @@ -185,12 +217,6 @@ def hierarchical_merge(bull, sections, depth): | |||
| bullets_size = len(BULLET_PATTERN[bull]) | |||
| levels = [[] for _ in range(bullets_size + 2)] | |||
| def not_title(txt): | |||
| if re.match(r"第[零一二三四五六七八九十百0-9]+条", txt): | |||
| return False | |||
| if len(txt.split(" ")) > 12 or (txt.find(" ") < 0 and len(txt) >= 32): | |||
| return True | |||
| return re.search(r"[,;,。;!!]", txt) | |||
| for i, (txt, layout) in enumerate(sections): | |||
| for j, p in enumerate(BULLET_PATTERN[bull]): | |||
| @@ -38,7 +38,7 @@ class EsQueryer: | |||
| "", | |||
| txt) | |||
| return re.sub( | |||
| r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was)*", "", txt, re.IGNORECASE) | |||
| r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was|to)*", "", txt, re.IGNORECASE) | |||
| def question(self, txt, tbl="qa", min_match="60%"): | |||
| txt = re.sub( | |||
| @@ -50,16 +50,16 @@ class EsQueryer: | |||
| txt = EsQueryer.rmWWW(txt) | |||
| if not self.isChinese(txt): | |||
| tks = txt.split(" ") | |||
| q = [] | |||
| tks = [t for t in txt.split(" ") if t.strip()] | |||
| q = tks | |||
| for i in range(1, len(tks)): | |||
| q.append("\"%s %s\"~2" % (tks[i - 1], tks[i])) | |||
| q.append("\"%s %s\"^2" % (tks[i - 1], tks[i])) | |||
| if not q: | |||
| q.append(txt) | |||
| return Q("bool", | |||
| must=Q("query_string", fields=self.flds, | |||
| type="best_fields", query=" OR ".join(q), | |||
| boost=1, minimum_should_match="60%") | |||
| boost=1, minimum_should_match=min_match) | |||
| ), txt.split(" ") | |||
| def needQieqie(tk): | |||
| @@ -147,7 +147,7 @@ class EsQueryer: | |||
| atks = toDict(atks) | |||
| btkss = [toDict(tks) for tks in btkss] | |||
| tksim = [self.similarity(atks, btks) for btks in btkss] | |||
| return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, sims[0], tksim | |||
| return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0] | |||
| def similarity(self, qtwt, dtwt): | |||
| if isinstance(dtwt, type("")): | |||
| @@ -119,6 +119,7 @@ class Dealer: | |||
| s["knn"]["filter"] = bqry.to_dict() | |||
| s["knn"]["similarity"] = 0.17 | |||
| res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src) | |||
| es_logger.info("【Q】: {}".format(json.dumps(s))) | |||
| kwds = set([]) | |||
| for k in keywords: | |||