|
|
|
@@ -36,132 +36,188 @@ class DeepResearcher: |
|
|
|
self._kb_retrieve = kb_retrieve |
|
|
|
self._kg_retrieve = kg_retrieve |
|
|
|
|
|
|
|
def thinking(self, chunk_info: dict, question: str): |
|
|
|
def rm_query_tags(line): |
|
|
|
pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY) |
|
|
|
return re.sub(pattern, "", line) |
|
|
|
|
|
|
|
def rm_result_tags(line): |
|
|
|
pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT) |
|
|
|
return re.sub(pattern, "", line) |
|
|
|
@staticmethod |
|
|
|
def _remove_query_tags(text): |
|
|
|
"""Remove query tags from text""" |
|
|
|
pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY) |
|
|
|
return re.sub(pattern, "", text) |
|
|
|
|
|
|
|
@staticmethod |
|
|
|
def _remove_result_tags(text): |
|
|
|
"""Remove result tags from text""" |
|
|
|
pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT) |
|
|
|
return re.sub(pattern, "", text) |
|
|
|
|
|
|
|
def _generate_reasoning(self, msg_history): |
|
|
|
"""Generate reasoning steps""" |
|
|
|
query_think = "" |
|
|
|
if msg_history[-1]["role"] != "user": |
|
|
|
msg_history.append({"role": "user", "content": "Continues reasoning with the new information.\n"}) |
|
|
|
else: |
|
|
|
msg_history[-1]["content"] += "\n\nContinues reasoning with the new information.\n" |
|
|
|
|
|
|
|
for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_history, {"temperature": 0.7}): |
|
|
|
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL) |
|
|
|
if not ans: |
|
|
|
continue |
|
|
|
query_think = ans |
|
|
|
yield query_think |
|
|
|
return query_think |
|
|
|
|
|
|
|
def _extract_search_queries(self, query_think, question, step_index): |
|
|
|
"""Extract search queries from thinking""" |
|
|
|
queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY) |
|
|
|
if not queries and step_index == 0: |
|
|
|
# If this is the first step and no queries are found, use the original question as the query |
|
|
|
queries = [question] |
|
|
|
return queries |
|
|
|
|
|
|
|
def _truncate_previous_reasoning(self, all_reasoning_steps): |
|
|
|
"""Truncate previous reasoning steps to maintain a reasonable length""" |
|
|
|
truncated_prev_reasoning = "" |
|
|
|
for i, step in enumerate(all_reasoning_steps): |
|
|
|
truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n" |
|
|
|
|
|
|
|
prev_steps = truncated_prev_reasoning.split('\n\n') |
|
|
|
if len(prev_steps) <= 5: |
|
|
|
truncated_prev_reasoning = '\n\n'.join(prev_steps) |
|
|
|
else: |
|
|
|
truncated_prev_reasoning = '' |
|
|
|
for i, step in enumerate(prev_steps): |
|
|
|
if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step: |
|
|
|
truncated_prev_reasoning += step + '\n\n' |
|
|
|
else: |
|
|
|
if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n': |
|
|
|
truncated_prev_reasoning += '...\n\n' |
|
|
|
|
|
|
|
return truncated_prev_reasoning.strip('\n') |
|
|
|
|
|
|
|
def _retrieve_information(self, search_query): |
|
|
|
"""Retrieve information from different sources""" |
|
|
|
# 1. Knowledge base retrieval |
|
|
|
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []} |
|
|
|
|
|
|
|
# 2. Web retrieval (if Tavily API is configured) |
|
|
|
if self.prompt_config.get("tavily_api_key"): |
|
|
|
tav = Tavily(self.prompt_config["tavily_api_key"]) |
|
|
|
tav_res = tav.retrieve_chunks(search_query) |
|
|
|
kbinfos["chunks"].extend(tav_res["chunks"]) |
|
|
|
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"]) |
|
|
|
|
|
|
|
# 3. Knowledge graph retrieval (if configured) |
|
|
|
if self.prompt_config.get("use_kg") and self._kg_retrieve: |
|
|
|
ck = self._kg_retrieve(question=search_query) |
|
|
|
if ck["content_with_weight"]: |
|
|
|
kbinfos["chunks"].insert(0, ck) |
|
|
|
|
|
|
|
return kbinfos |
|
|
|
|
|
|
|
def _update_chunk_info(self, chunk_info, kbinfos): |
|
|
|
"""Update chunk information for citations""" |
|
|
|
if not chunk_info["chunks"]: |
|
|
|
# If this is the first retrieval, use the retrieval results directly |
|
|
|
for k in chunk_info.keys(): |
|
|
|
chunk_info[k] = kbinfos[k] |
|
|
|
else: |
|
|
|
# Merge newly retrieved information, avoiding duplicates |
|
|
|
cids = [c["chunk_id"] for c in chunk_info["chunks"]] |
|
|
|
for c in kbinfos["chunks"]: |
|
|
|
if c["chunk_id"] not in cids: |
|
|
|
chunk_info["chunks"].append(c) |
|
|
|
|
|
|
|
dids = [d["doc_id"] for d in chunk_info["doc_aggs"]] |
|
|
|
for d in kbinfos["doc_aggs"]: |
|
|
|
if d["doc_id"] not in dids: |
|
|
|
chunk_info["doc_aggs"].append(d) |
|
|
|
|
|
|
|
def _extract_relevant_info(self, truncated_prev_reasoning, search_query, kbinfos): |
|
|
|
"""Extract and summarize relevant information""" |
|
|
|
summary_think = "" |
|
|
|
for ans in self.chat_mdl.chat_streamly( |
|
|
|
RELEVANT_EXTRACTION_PROMPT.format( |
|
|
|
prev_reasoning=truncated_prev_reasoning, |
|
|
|
search_query=search_query, |
|
|
|
document="\n".join(kb_prompt(kbinfos, 4096)) |
|
|
|
), |
|
|
|
[{"role": "user", |
|
|
|
"content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}], |
|
|
|
{"temperature": 0.7}): |
|
|
|
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL) |
|
|
|
if not ans: |
|
|
|
continue |
|
|
|
summary_think = ans |
|
|
|
yield summary_think |
|
|
|
|
|
|
|
return summary_think |
|
|
|
|
|
|
|
def thinking(self, chunk_info: dict, question: str): |
|
|
|
executed_search_queries = [] |
|
|
|
msg_hisotry = [{"role": "user", "content": f'Question:\"{question}\"\n'}] |
|
|
|
msg_history = [{"role": "user", "content": f'Question:\"{question}\"\n'}] |
|
|
|
all_reasoning_steps = [] |
|
|
|
think = "<think>" |
|
|
|
for ii in range(MAX_SEARCH_LIMIT + 1): |
|
|
|
if ii == MAX_SEARCH_LIMIT - 1: |
|
|
|
|
|
|
|
for step_index in range(MAX_SEARCH_LIMIT + 1): |
|
|
|
# Check if the maximum search limit has been reached |
|
|
|
if step_index == MAX_SEARCH_LIMIT - 1: |
|
|
|
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n" |
|
|
|
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
all_reasoning_steps.append(summary_think) |
|
|
|
msg_hisotry.append({"role": "assistant", "content": summary_think}) |
|
|
|
msg_history.append({"role": "assistant", "content": summary_think}) |
|
|
|
break |
|
|
|
|
|
|
|
# Step 1: Generate reasoning |
|
|
|
query_think = "" |
|
|
|
if msg_hisotry[-1]["role"] != "user": |
|
|
|
msg_hisotry.append({"role": "user", "content": "Continues reasoning with the new information.\n"}) |
|
|
|
else: |
|
|
|
msg_hisotry[-1]["content"] += "\n\nContinues reasoning with the new information.\n" |
|
|
|
for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_hisotry, {"temperature": 0.7}): |
|
|
|
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL) |
|
|
|
if not ans: |
|
|
|
continue |
|
|
|
for ans in self._generate_reasoning(msg_history): |
|
|
|
query_think = ans |
|
|
|
yield {"answer": think + rm_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
yield {"answer": think + self._remove_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
|
|
|
|
think += rm_query_tags(query_think) |
|
|
|
think += self._remove_query_tags(query_think) |
|
|
|
all_reasoning_steps.append(query_think) |
|
|
|
queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY) |
|
|
|
if not queries: |
|
|
|
if ii > 0: |
|
|
|
break |
|
|
|
queries = [question] |
|
|
|
|
|
|
|
# Step 2: Extract search queries |
|
|
|
queries = self._extract_search_queries(query_think, question, step_index) |
|
|
|
if not queries and step_index > 0: |
|
|
|
# If not the first step and no queries, end the search process |
|
|
|
break |
|
|
|
|
|
|
|
# Process each search query |
|
|
|
for search_query in queries: |
|
|
|
logging.info(f"[THINK]Query: {ii}. {search_query}") |
|
|
|
msg_hisotry.append({"role": "assistant", "content": search_query}) |
|
|
|
think += f"\n\n> {ii +1}. {search_query}\n\n" |
|
|
|
logging.info(f"[THINK]Query: {step_index}. {search_query}") |
|
|
|
msg_history.append({"role": "assistant", "content": search_query}) |
|
|
|
think += f"\n\n> {step_index + 1}. {search_query}\n\n" |
|
|
|
yield {"answer": think + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
|
|
|
|
summary_think = "" |
|
|
|
# The search query has been searched in previous steps. |
|
|
|
# Check if the query has already been executed |
|
|
|
if search_query in executed_search_queries: |
|
|
|
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n" |
|
|
|
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
all_reasoning_steps.append(summary_think) |
|
|
|
msg_hisotry.append({"role": "user", "content": summary_think}) |
|
|
|
msg_history.append({"role": "user", "content": summary_think}) |
|
|
|
think += summary_think |
|
|
|
continue |
|
|
|
|
|
|
|
truncated_prev_reasoning = "" |
|
|
|
for i, step in enumerate(all_reasoning_steps): |
|
|
|
truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n" |
|
|
|
|
|
|
|
prev_steps = truncated_prev_reasoning.split('\n\n') |
|
|
|
if len(prev_steps) <= 5: |
|
|
|
truncated_prev_reasoning = '\n\n'.join(prev_steps) |
|
|
|
else: |
|
|
|
truncated_prev_reasoning = '' |
|
|
|
for i, step in enumerate(prev_steps): |
|
|
|
if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step: |
|
|
|
truncated_prev_reasoning += step + '\n\n' |
|
|
|
else: |
|
|
|
if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n': |
|
|
|
truncated_prev_reasoning += '...\n\n' |
|
|
|
truncated_prev_reasoning = truncated_prev_reasoning.strip('\n') |
|
|
|
|
|
|
|
# Retrieval procedure: |
|
|
|
# 1. KB search |
|
|
|
# 2. Web search (optional) |
|
|
|
# 3. KG search (optional) |
|
|
|
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []} |
|
|
|
|
|
|
|
if self.prompt_config.get("tavily_api_key"): |
|
|
|
tav = Tavily(self.prompt_config["tavily_api_key"]) |
|
|
|
tav_res = tav.retrieve_chunks(search_query) |
|
|
|
kbinfos["chunks"].extend(tav_res["chunks"]) |
|
|
|
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"]) |
|
|
|
if self.prompt_config.get("use_kg") and self._kg_retrieve: |
|
|
|
ck = self._kg_retrieve(question=search_query) |
|
|
|
if ck["content_with_weight"]: |
|
|
|
kbinfos["chunks"].insert(0, ck) |
|
|
|
|
|
|
|
# Merge chunk info for citations |
|
|
|
if not chunk_info["chunks"]: |
|
|
|
for k in chunk_info.keys(): |
|
|
|
chunk_info[k] = kbinfos[k] |
|
|
|
else: |
|
|
|
cids = [c["chunk_id"] for c in chunk_info["chunks"]] |
|
|
|
for c in kbinfos["chunks"]: |
|
|
|
if c["chunk_id"] in cids: |
|
|
|
continue |
|
|
|
chunk_info["chunks"].append(c) |
|
|
|
dids = [d["doc_id"] for d in chunk_info["doc_aggs"]] |
|
|
|
for d in kbinfos["doc_aggs"]: |
|
|
|
if d["doc_id"] in dids: |
|
|
|
continue |
|
|
|
chunk_info["doc_aggs"].append(d) |
|
|
|
|
|
|
|
|
|
|
|
executed_search_queries.append(search_query) |
|
|
|
|
|
|
|
# Step 3: Truncate previous reasoning steps |
|
|
|
truncated_prev_reasoning = self._truncate_previous_reasoning(all_reasoning_steps) |
|
|
|
|
|
|
|
# Step 4: Retrieve information |
|
|
|
kbinfos = self._retrieve_information(search_query) |
|
|
|
|
|
|
|
# Step 5: Update chunk information |
|
|
|
self._update_chunk_info(chunk_info, kbinfos) |
|
|
|
|
|
|
|
# Step 6: Extract relevant information |
|
|
|
think += "\n\n" |
|
|
|
for ans in self.chat_mdl.chat_streamly( |
|
|
|
RELEVANT_EXTRACTION_PROMPT.format( |
|
|
|
prev_reasoning=truncated_prev_reasoning, |
|
|
|
search_query=search_query, |
|
|
|
document="\n".join(kb_prompt(kbinfos, 4096)) |
|
|
|
), |
|
|
|
[{"role": "user", |
|
|
|
"content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}], |
|
|
|
{"temperature": 0.7}): |
|
|
|
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL) |
|
|
|
if not ans: |
|
|
|
continue |
|
|
|
summary_think = "" |
|
|
|
for ans in self._extract_relevant_info(truncated_prev_reasoning, search_query, kbinfos): |
|
|
|
summary_think = ans |
|
|
|
yield {"answer": think + rm_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
yield {"answer": think + self._remove_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
|
|
|
|
all_reasoning_steps.append(summary_think) |
|
|
|
msg_hisotry.append( |
|
|
|
msg_history.append( |
|
|
|
{"role": "user", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"}) |
|
|
|
think += rm_result_tags(summary_think) |
|
|
|
logging.info(f"[THINK]Summary: {ii}. {summary_think}") |
|
|
|
think += self._remove_result_tags(summary_think) |
|
|
|
logging.info(f"[THINK]Summary: {step_index}. {summary_think}") |
|
|
|
|
|
|
|
yield think + "</think>" |