|
|
|
@@ -17,6 +17,8 @@ import logging |
|
|
|
import binascii |
|
|
|
import os |
|
|
|
import json |
|
|
|
import time |
|
|
|
|
|
|
|
import json_repair |
|
|
|
import re |
|
|
|
from collections import defaultdict |
|
|
|
@@ -33,6 +35,7 @@ from api.db.services.llm_service import TenantLLMService, LLMBundle |
|
|
|
from api import settings |
|
|
|
from graphrag.utils import get_tags_from_cache, set_tags_to_cache |
|
|
|
from rag.app.resume import forbidden_select_fields4resume |
|
|
|
from rag.nlp import extract_between |
|
|
|
from rag.nlp.search import index_name |
|
|
|
from rag.settings import TAG_FLD |
|
|
|
from rag.utils import rmSpace, num_tokens_from_string, encoder |
|
|
|
@@ -135,7 +138,7 @@ def kb_prompt(kbinfos, max_tokens): |
|
|
|
knowledges = [] |
|
|
|
for nm, cks_meta in doc2chunks.items(): |
|
|
|
txt = f"Document: {nm} \n" |
|
|
|
for k,v in cks_meta["meta"].items(): |
|
|
|
for k, v in cks_meta["meta"].items(): |
|
|
|
txt += f"{k}: {v}\n" |
|
|
|
txt += "Relevant fragments as following:\n" |
|
|
|
for i, chunk in enumerate(cks_meta["chunks"], 1): |
|
|
|
@@ -246,9 +249,11 @@ def chat(dialog, messages, stream=True, **kwargs): |
|
|
|
|
|
|
|
bind_reranker_ts = timer() |
|
|
|
generate_keyword_ts = bind_reranker_ts |
|
|
|
thought = "" |
|
|
|
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []} |
|
|
|
|
|
|
|
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]: |
|
|
|
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []} |
|
|
|
knowledges = [] |
|
|
|
else: |
|
|
|
if prompt_config.get("keyword", False): |
|
|
|
questions[-1] += keyword_extraction(chat_mdl, questions[-1]) |
|
|
|
@@ -256,28 +261,37 @@ def chat(dialog, messages, stream=True, **kwargs): |
|
|
|
|
|
|
|
tenant_ids = list(set([kb.tenant_id for kb in kbs])) |
|
|
|
|
|
|
|
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n, |
|
|
|
dialog.similarity_threshold, |
|
|
|
dialog.vector_similarity_weight, |
|
|
|
doc_ids=attachments, |
|
|
|
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl, |
|
|
|
rank_feature=label_question(" ".join(questions), kbs) |
|
|
|
) |
|
|
|
if prompt_config.get("use_kg"): |
|
|
|
ck = settings.kg_retrievaler.retrieval(" ".join(questions), |
|
|
|
tenant_ids, |
|
|
|
dialog.kb_ids, |
|
|
|
embd_mdl, |
|
|
|
LLMBundle(dialog.tenant_id, LLMType.CHAT)) |
|
|
|
if ck["content_with_weight"]: |
|
|
|
kbinfos["chunks"].insert(0, ck) |
|
|
|
|
|
|
|
retrieval_ts = timer() |
|
|
|
knowledges = [] |
|
|
|
if prompt_config.get("reasoning", False): |
|
|
|
for think in reasoning(kbinfos, " ".join(questions), chat_mdl, embd_mdl, tenant_ids, dialog.kb_ids, MAX_SEARCH_LIMIT=3): |
|
|
|
if isinstance(think, str): |
|
|
|
thought = think |
|
|
|
knowledges = [t for t in think.split("\n") if t] |
|
|
|
else: |
|
|
|
yield think |
|
|
|
else: |
|
|
|
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n, |
|
|
|
dialog.similarity_threshold, |
|
|
|
dialog.vector_similarity_weight, |
|
|
|
doc_ids=attachments, |
|
|
|
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl, |
|
|
|
rank_feature=label_question(" ".join(questions), kbs) |
|
|
|
) |
|
|
|
if prompt_config.get("use_kg"): |
|
|
|
ck = settings.kg_retrievaler.retrieval(" ".join(questions), |
|
|
|
tenant_ids, |
|
|
|
dialog.kb_ids, |
|
|
|
embd_mdl, |
|
|
|
LLMBundle(dialog.tenant_id, LLMType.CHAT)) |
|
|
|
if ck["content_with_weight"]: |
|
|
|
kbinfos["chunks"].insert(0, ck) |
|
|
|
|
|
|
|
knowledges = kb_prompt(kbinfos, max_tokens) |
|
|
|
|
|
|
|
knowledges = kb_prompt(kbinfos, max_tokens) |
|
|
|
logging.debug( |
|
|
|
"{}->{}".format(" ".join(questions), "\n->".join(knowledges))) |
|
|
|
|
|
|
|
retrieval_ts = timer() |
|
|
|
if not knowledges and prompt_config.get("empty_response"): |
|
|
|
empty_res = prompt_config["empty_response"] |
|
|
|
yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)} |
|
|
|
@@ -302,9 +316,12 @@ def chat(dialog, messages, stream=True, **kwargs): |
|
|
|
def decorate_answer(answer): |
|
|
|
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts |
|
|
|
|
|
|
|
finish_chat_ts = timer() |
|
|
|
|
|
|
|
refs = [] |
|
|
|
ans = answer.split("</think>") |
|
|
|
think = "" |
|
|
|
if len(ans) == 2: |
|
|
|
think = ans[0] + "</think>" |
|
|
|
answer = ans[1] |
|
|
|
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)): |
|
|
|
answer, idx = retriever.insert_citations(answer, |
|
|
|
[ck["content_ltks"] |
|
|
|
@@ -342,22 +359,24 @@ def chat(dialog, messages, stream=True, **kwargs): |
|
|
|
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000 |
|
|
|
|
|
|
|
prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms" |
|
|
|
return {"answer": answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt)} |
|
|
|
return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()} |
|
|
|
|
|
|
|
if stream: |
|
|
|
last_ans = "" |
|
|
|
answer = "" |
|
|
|
for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf): |
|
|
|
if thought: |
|
|
|
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL) |
|
|
|
answer = ans |
|
|
|
delta_ans = ans[len(last_ans):] |
|
|
|
if num_tokens_from_string(delta_ans) < 16: |
|
|
|
continue |
|
|
|
last_ans = answer |
|
|
|
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} |
|
|
|
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} |
|
|
|
delta_ans = answer[len(last_ans):] |
|
|
|
if delta_ans: |
|
|
|
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} |
|
|
|
yield decorate_answer(answer) |
|
|
|
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} |
|
|
|
yield decorate_answer(thought+answer) |
|
|
|
else: |
|
|
|
answer = chat_mdl.chat(prompt, msg[1:], gen_conf) |
|
|
|
user_content = msg[-1].get("content", "[content not available]") |
|
|
|
@@ -798,3 +817,191 @@ Output: |
|
|
|
except Exception as e: |
|
|
|
logging.exception(f"JSON parsing error: {result} -> {e}") |
|
|
|
raise e |
|
|
|
|
|
|
|
|
|
|
|
def reasoning(chunk_info: dict, question: str, chat_mdl: LLMBundle, embd_mdl: LLMBundle, |
|
|
|
tenant_ids: list[str], kb_ids: list[str], MAX_SEARCH_LIMIT: int = 3, |
|
|
|
top_n: int = 5, similarity_threshold: float = 0.4, vector_similarity_weight: float = 0.3): |
|
|
|
BEGIN_SEARCH_QUERY = "<|begin_search_query|>" |
|
|
|
END_SEARCH_QUERY = "<|end_search_query|>" |
|
|
|
BEGIN_SEARCH_RESULT = "<|begin_search_result|>" |
|
|
|
END_SEARCH_RESULT = "<|end_search_result|>" |
|
|
|
|
|
|
|
def rm_query_tags(line): |
|
|
|
pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY) |
|
|
|
return re.sub(pattern, "", line) |
|
|
|
|
|
|
|
def rm_result_tags(line): |
|
|
|
pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT) |
|
|
|
return re.sub(pattern, "", line) |
|
|
|
|
|
|
|
reason_prompt = ( |
|
|
|
"You are a reasoning assistant with the ability to perform dataset searches to help " |
|
|
|
"you answer the user's question accurately. You have special tools:\n\n" |
|
|
|
f"- To perform a search: write {BEGIN_SEARCH_QUERY} your query here {END_SEARCH_QUERY}.\n" |
|
|
|
f"Then, the system will search and analyze relevant content, then provide you with helpful information in the format {BEGIN_SEARCH_RESULT} ...search results... {END_SEARCH_RESULT}.\n\n" |
|
|
|
f"You can repeat the search process multiple times if necessary. The maximum number of search attempts is limited to {MAX_SEARCH_LIMIT}.\n\n" |
|
|
|
"Once you have all the information you need, continue your reasoning.\n\n" |
|
|
|
"-- Example --\n" |
|
|
|
"Question: \"Find the minimum number of vertices in a Steiner tree that includes all specified vertices in a given tree.\"\n" |
|
|
|
"Assistant thinking steps:\n" |
|
|
|
"- I need to understand what a Steiner tree is and how to compute the minimum number of vertices required to include all specified vertices in a given tree.\n\n" |
|
|
|
"Assistant:\n" |
|
|
|
f"{BEGIN_SEARCH_QUERY}Minimum Steiner Tree problem in trees{END_SEARCH_QUERY}\n\n" |
|
|
|
"(System returns processed information from relevant web pages)\n\n" |
|
|
|
"Assistant continues reasoning with the new information...\n\n" |
|
|
|
"**Remember**:\n" |
|
|
|
f"- You have a dataset to search, so you just provide a proper search query.\n" |
|
|
|
f"- Use {BEGIN_SEARCH_QUERY} to request a dataset search and end with {END_SEARCH_QUERY}.\n" |
|
|
|
"- The language of query MUST be as the same as 'Question' or 'search result'.\n" |
|
|
|
"- When done searching, continue your reasoning.\n\n" |
|
|
|
'Please answer the following question. You should think step by step to solve it.\n\n' |
|
|
|
) |
|
|
|
|
|
|
|
relevant_extraction_prompt = """**Task Instruction:** |
|
|
|
|
|
|
|
You are tasked with reading and analyzing web pages based on the following inputs: **Previous Reasoning Steps**, **Current Search Query**, and **Searched Web Pages**. Your objective is to extract relevant and helpful information for **Current Search Query** from the **Searched Web Pages** and seamlessly integrate this information into the **Previous Reasoning Steps** to continue reasoning for the original question. |
|
|
|
|
|
|
|
**Guidelines:** |
|
|
|
|
|
|
|
1. **Analyze the Searched Web Pages:** |
|
|
|
- Carefully review the content of each searched web page. |
|
|
|
- Identify factual information that is relevant to the **Current Search Query** and can aid in the reasoning process for the original question. |
|
|
|
|
|
|
|
2. **Extract Relevant Information:** |
|
|
|
- Select the information from the Searched Web Pages that directly contributes to advancing the **Previous Reasoning Steps**. |
|
|
|
- Ensure that the extracted information is accurate and relevant. |
|
|
|
|
|
|
|
3. **Output Format:** |
|
|
|
- **If the web pages provide helpful information for current search query:** Present the information beginning with `**Final Information**` as shown below. |
|
|
|
- The language of query **MUST BE** as the same as 'Search Query' or 'Web Pages'.\n" |
|
|
|
**Final Information** |
|
|
|
|
|
|
|
[Helpful information] |
|
|
|
|
|
|
|
- **If the web pages do not provide any helpful information for current search query:** Output the following text. |
|
|
|
|
|
|
|
**Final Information** |
|
|
|
|
|
|
|
No helpful information found. |
|
|
|
|
|
|
|
**Inputs:** |
|
|
|
- **Previous Reasoning Steps:** |
|
|
|
{prev_reasoning} |
|
|
|
|
|
|
|
- **Current Search Query:** |
|
|
|
{search_query} |
|
|
|
|
|
|
|
- **Searched Web Pages:** |
|
|
|
{document} |
|
|
|
|
|
|
|
""" |
|
|
|
|
|
|
|
executed_search_queries = [] |
|
|
|
msg_hisotry = [{"role": "user", "content": f'Question:\n{question}\n\n'}] |
|
|
|
all_reasoning_steps = [] |
|
|
|
think = "<think>" |
|
|
|
for ii in range(MAX_SEARCH_LIMIT + 1): |
|
|
|
if ii == MAX_SEARCH_LIMIT - 1: |
|
|
|
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n" |
|
|
|
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
all_reasoning_steps.append(summary_think) |
|
|
|
msg_hisotry.append({"role": "assistant", "content": summary_think}) |
|
|
|
break |
|
|
|
|
|
|
|
query_think = "" |
|
|
|
if msg_hisotry[-1]["role"] != "user": |
|
|
|
msg_hisotry.append({"role": "user", "content": "Continues reasoning with the new information...\n"}) |
|
|
|
for ans in chat_mdl.chat_streamly(reason_prompt, msg_hisotry, {"temperature": 0.7}): |
|
|
|
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL) |
|
|
|
if not ans: |
|
|
|
continue |
|
|
|
query_think = ans |
|
|
|
yield {"answer": think + rm_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
|
|
|
|
think += rm_query_tags(query_think) |
|
|
|
all_reasoning_steps.append(query_think) |
|
|
|
msg_hisotry.append({"role": "assistant", "content": query_think}) |
|
|
|
search_query = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY) |
|
|
|
if not search_query: |
|
|
|
if ii > 0: |
|
|
|
break |
|
|
|
search_query = question |
|
|
|
txt = f"\n{BEGIN_SEARCH_QUERY}{question}{END_SEARCH_QUERY}\n\n" |
|
|
|
think += txt |
|
|
|
msg_hisotry[-1]["content"] += txt |
|
|
|
|
|
|
|
logging.info(f"[THINK]Query: {ii}. {search_query}") |
|
|
|
think += f"\n\n> {ii+1}. {search_query}\n\n" |
|
|
|
yield {"answer": think + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
|
|
|
|
summary_think = "" |
|
|
|
# The search query has been searched in previous steps. |
|
|
|
if search_query in executed_search_queries: |
|
|
|
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n" |
|
|
|
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
all_reasoning_steps.append(summary_think) |
|
|
|
msg_hisotry.append({"role": "assistant", "content": summary_think}) |
|
|
|
think += summary_think |
|
|
|
continue |
|
|
|
|
|
|
|
truncated_prev_reasoning = "" |
|
|
|
for i, step in enumerate(all_reasoning_steps): |
|
|
|
truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n" |
|
|
|
|
|
|
|
prev_steps = truncated_prev_reasoning.split('\n\n') |
|
|
|
if len(prev_steps) <= 5: |
|
|
|
truncated_prev_reasoning = '\n\n'.join(prev_steps) |
|
|
|
else: |
|
|
|
truncated_prev_reasoning = '' |
|
|
|
for i, step in enumerate(prev_steps): |
|
|
|
if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step: |
|
|
|
truncated_prev_reasoning += step + '\n\n' |
|
|
|
else: |
|
|
|
if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n': |
|
|
|
truncated_prev_reasoning += '...\n\n' |
|
|
|
truncated_prev_reasoning = truncated_prev_reasoning.strip('\n') |
|
|
|
|
|
|
|
kbinfos = settings.retrievaler.retrieval(search_query, embd_mdl, tenant_ids, kb_ids, 1, top_n, |
|
|
|
similarity_threshold, |
|
|
|
vector_similarity_weight |
|
|
|
) |
|
|
|
# Merge chunk info for citations |
|
|
|
if not chunk_info["chunks"]: |
|
|
|
for k in chunk_info.keys(): |
|
|
|
chunk_info[k] = kbinfos[k] |
|
|
|
else: |
|
|
|
cids = [c["chunk_id"] for c in chunk_info["chunks"]] |
|
|
|
for c in kbinfos["chunks"]: |
|
|
|
if c["chunk_id"] in cids: |
|
|
|
continue |
|
|
|
chunk_info["chunks"].append(c) |
|
|
|
dids = [d["doc_id"] for d in chunk_info["doc_aggs"]] |
|
|
|
for d in kbinfos["doc_aggs"]: |
|
|
|
if d["doc_id"] in dids: |
|
|
|
continue |
|
|
|
chunk_info["doc_aggs"].append(d) |
|
|
|
|
|
|
|
think += "\n\n" |
|
|
|
for ans in chat_mdl.chat_streamly( |
|
|
|
relevant_extraction_prompt.format( |
|
|
|
prev_reasoning=truncated_prev_reasoning, |
|
|
|
search_query=search_query, |
|
|
|
document="\n".join(kb_prompt(kbinfos, 512)) |
|
|
|
), |
|
|
|
[{"role": "user", |
|
|
|
"content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}], |
|
|
|
{"temperature": 0.7}): |
|
|
|
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL) |
|
|
|
if not ans: |
|
|
|
continue |
|
|
|
summary_think = ans |
|
|
|
yield {"answer": think + rm_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None} |
|
|
|
|
|
|
|
all_reasoning_steps.append(summary_think) |
|
|
|
msg_hisotry.append( |
|
|
|
{"role": "assistant", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"}) |
|
|
|
think += rm_result_tags(summary_think) |
|
|
|
logging.info(f"[THINK]Summary: {ii}. {summary_think}") |
|
|
|
|
|
|
|
yield think + "</think>" |