| @@ -477,7 +477,7 @@ class Knowledgebase(DataBaseModel): | |||
| vector_similarity_weight = FloatField(default=0.3) | |||
| parser_id = CharField(max_length=32, null=False, help_text="default parser ID", default=ParserType.NAIVE.value) | |||
| parser_config = JSONField(null=False, default={"pages":[[0,1000000]]}) | |||
| parser_config = JSONField(null=False, default={"pages":[[1,1000000]]}) | |||
| status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1") | |||
| def __str__(self): | |||
| @@ -492,7 +492,7 @@ class Document(DataBaseModel): | |||
| thumbnail = TextField(null=True, help_text="thumbnail base64 string") | |||
| kb_id = CharField(max_length=256, null=False, index=True) | |||
| parser_id = CharField(max_length=32, null=False, help_text="default parser ID") | |||
| parser_config = JSONField(null=False, default={"pages":[[0,1000000]]}) | |||
| parser_config = JSONField(null=False, default={"pages":[[1,1000000]]}) | |||
| source_type = CharField(max_length=128, null=False, default="local", help_text="where dose this document from") | |||
| type = CharField(max_length=32, null=False, help_text="file extension") | |||
| created_by = CharField(max_length=32, null=False, help_text="who created it") | |||
| @@ -1074,15 +1074,15 @@ class HuParser: | |||
| class PlainParser(object): | |||
| def __call__(self, filename, **kwargs): | |||
| def __call__(self, filename, from_page=0, to_page=100000, **kwargs): | |||
| self.outlines = [] | |||
| lines = [] | |||
| try: | |||
| self.pdf = pdf2_read(filename if isinstance(filename, str) else BytesIO(filename)) | |||
| outlines = self.pdf.outline | |||
| for page in self.pdf.pages: | |||
| for page in self.pdf.pages[from_page:to_page]: | |||
| lines.extend([t for t in page.extract_text().split("\n")]) | |||
| outlines = self.pdf.outline | |||
| def dfs(arr, depth): | |||
| for a in arr: | |||
| if isinstance(a, dict): | |||
| @@ -15,6 +15,7 @@ import re | |||
| from collections import Counter | |||
| from copy import deepcopy | |||
| import numpy as np | |||
| from huggingface_hub import snapshot_download | |||
| from api.db import ParserType | |||
| from api.utils.file_utils import get_project_base_directory | |||
| @@ -36,7 +37,8 @@ class LayoutRecognizer(Recognizer): | |||
| "Equation", | |||
| ] | |||
| def __init__(self, domain): | |||
| super().__init__(self.labels, domain, os.path.join(get_project_base_directory(), "rag/res/deepdoc/")) | |||
| model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc") | |||
| super().__init__(self.labels, domain, model_dir)#os.path.join(get_project_base_directory(), "rag/res/deepdoc/")) | |||
| self.garbage_layouts = ["footer", "header", "reference"] | |||
| def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True): | |||
| @@ -30,8 +30,6 @@ class Pdf(PdfParser): | |||
| # print(b) | |||
| print("OCR:", timer()-start) | |||
| self._layouts_rec(zoomin) | |||
| callback(0.65, "Layout analysis finished.") | |||
| print("paddle layouts:", timer() - start) | |||
| @@ -47,53 +45,8 @@ class Pdf(PdfParser): | |||
| for b in self.boxes: | |||
| b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip()) | |||
| return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)] | |||
| # set pivot using the most frequent type of title, | |||
| # then merge between 2 pivot | |||
| if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1: | |||
| max_lvl = max([lvl for _, lvl in self.outlines]) | |||
| most_level = max(0, max_lvl-1) | |||
| levels = [] | |||
| for b in self.boxes: | |||
| for t,lvl in self.outlines: | |||
| tks = set([t[i]+t[i+1] for i in range(len(t)-1)]) | |||
| tks_ = set([b["text"][i]+b["text"][i+1] for i in range(min(len(t), len(b["text"])-1))]) | |||
| if len(set(tks & tks_))/max([len(tks), len(tks_), 1]) > 0.8: | |||
| levels.append(lvl) | |||
| break | |||
| else: | |||
| levels.append(max_lvl + 1) | |||
| else: | |||
| bull = bullets_category([b["text"] for b in self.boxes]) | |||
| most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes]) | |||
| assert len(self.boxes) == len(levels) | |||
| sec_ids = [] | |||
| sid = 0 | |||
| for i, lvl in enumerate(levels): | |||
| if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1 | |||
| sec_ids.append(sid) | |||
| #print(lvl, self.boxes[i]["text"], most_level, sid) | |||
| sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)] | |||
| for (img, rows), poss in tbls: | |||
| sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0]+1-from_page, p[1], p[2], p[3], p[4]) for p in poss])) | |||
| chunks = [] | |||
| last_sid = -2 | |||
| tk_cnt = 0 | |||
| for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])): | |||
| poss = "\t".join([tag(*pos) for pos in poss]) | |||
| if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1): | |||
| if chunks: | |||
| chunks[-1] += "\n" + txt + poss | |||
| tk_cnt += num_tokens_from_string(txt) | |||
| continue | |||
| chunks.append(txt + poss) | |||
| tk_cnt = num_tokens_from_string(txt) | |||
| if sec_id >-1: last_sid = sec_id | |||
| return chunks, tbls | |||
| return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)], tbls | |||
| def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs): | |||
| @@ -106,7 +59,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser() | |||
| sections, tbls = pdf_parser(filename if not binary else binary, | |||
| from_page=from_page, to_page=to_page, callback=callback) | |||
| if sections and len(sections[0])<3: cks = [(t, l, [0]*5) for t, l in sections] | |||
| if sections and len(sections[0])<3: sections = [(t, l, [[0]*5]) for t, l in sections] | |||
| else: raise NotImplementedError("file type not supported yet(pdf supported)") | |||
| doc = { | |||
| "docnm_kwd": filename | |||
| @@ -131,6 +85,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| break | |||
| else: | |||
| levels.append(max_lvl + 1) | |||
| else: | |||
| bull = bullets_category([txt for txt,_,_ in sections]) | |||
| most_level, levels = title_frequency(bull, [(txt, l) for txt, l, poss in sections]) | |||
| @@ -45,7 +45,7 @@ class Pdf(PdfParser): | |||
| for (img, rows), poss in tbls: | |||
| sections.append((rows if isinstance(rows, str) else rows[0], | |||
| [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss])) | |||
| return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))] | |||
| return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))], None | |||
| def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs): | |||
| @@ -56,7 +56,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| eng = lang.lower() == "english"#is_english(cks) | |||
| sections = [] | |||
| if re.search(r"\.docx?$", filename, re.IGNORECASE): | |||
| callback(0.1, "Start to parse.") | |||
| sections = [txt for txt in laws.Docx()(filename, binary) if txt] | |||
| @@ -64,7 +63,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| elif re.search(r"\.pdf$", filename, re.IGNORECASE): | |||
| pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser() | |||
| sections = pdf_parser(filename if not binary else binary, to_page=to_page, callback=callback) | |||
| sections, _ = pdf_parser(filename if not binary else binary, to_page=to_page, callback=callback) | |||
| sections = [s for s, _ in sections if s] | |||
| elif re.search(r"\.xlsx?$", filename, re.IGNORECASE): | |||
| @@ -136,7 +136,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| "title": filename, | |||
| "authors": " ", | |||
| "abstract": "", | |||
| "sections": pdf_parser(filename if not binary else binary), | |||
| "sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page), | |||
| "tables": [] | |||
| } | |||
| else: | |||
| @@ -65,10 +65,10 @@ class Pdf(PdfParser): | |||
| class PlainPdf(PlainParser): | |||
| def __call__(self, filename, binary=None, callback=None, **kwargs): | |||
| def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |||
| self.pdf = pdf2_read(filename if not binary else BytesIO(filename)) | |||
| page_txt = [] | |||
| for page in self.pdf.pages: | |||
| for page in self.pdf.pages[from_page: to_page]: | |||
| page_txt.append(page.extract_text()) | |||
| callback(0.9, "Parsing finished") | |||
| return [(txt, None) for txt in page_txt] | |||
| @@ -16,8 +16,8 @@ BULLET_PATTERN = [[ | |||
| ], [ | |||
| r"第[0-9]+章", | |||
| r"第[0-9]+节", | |||
| r"[0-9]{,3}[\. 、]", | |||
| r"[0-9]{,2}\.[0-9]{,2}", | |||
| r"[0-9]{,2}[\. 、]", | |||
| r"[0-9]{,2}\.[0-9]{,2}[^a-zA-Z/%~-]", | |||
| r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}", | |||
| r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}", | |||
| ], [ | |||
| @@ -40,13 +40,20 @@ def random_choices(arr, k): | |||
| return random.choices(arr, k=k) | |||
| def not_bullet(line): | |||
| patt = [ | |||
| r"0", r"[0-9]+ +[0-9~个只-]", r"[0-9]+\.{2,}" | |||
| ] | |||
| return any([re.match(r, line) for r in patt]) | |||
| def bullets_category(sections): | |||
| global BULLET_PATTERN | |||
| hits = [0] * len(BULLET_PATTERN) | |||
| for i, pro in enumerate(BULLET_PATTERN): | |||
| for sec in sections: | |||
| for p in pro: | |||
| if re.match(p, sec): | |||
| if re.match(p, sec) and not not_bullet(sec): | |||
| hits[i] += 1 | |||
| break | |||
| maxium = 0 | |||
| @@ -194,7 +201,7 @@ def title_frequency(bull, sections): | |||
| for i, (txt, layout) in enumerate(sections): | |||
| for j, p in enumerate(BULLET_PATTERN[bull]): | |||
| if re.match(p, txt.strip()): | |||
| if re.match(p, txt.strip()) and not not_bullet(txt): | |||
| levels[i] = j | |||
| break | |||
| else: | |||
| @@ -81,21 +81,22 @@ def dispatch(): | |||
| tsks = [] | |||
| if r["type"] == FileType.PDF.value: | |||
| if not r["parser_config"].get("layout_recognize", True): | |||
| tsks.append(new_task()) | |||
| continue | |||
| do_layout = r["parser_config"].get("layout_recognize", True) | |||
| pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"])) | |||
| page_size = r["parser_config"].get("task_page_size", 12) | |||
| if r["parser_id"] == "paper": page_size = r["parser_config"].get("task_page_size", 22) | |||
| if r["parser_id"] == "one": page_size = 1000000000 | |||
| if not do_layout: page_size = 1000000000 | |||
| for s,e in r["parser_config"].get("pages", [(1, 100000)]): | |||
| s -= 1 | |||
| e = min(e, pages) | |||
| s = max(0, s) | |||
| e = min(e-1, pages) | |||
| for p in range(s, e, page_size): | |||
| task = new_task() | |||
| task["from_page"] = p | |||
| task["to_page"] = min(p + page_size, e) | |||
| tsks.append(task) | |||
| elif r["parser_id"] == "table": | |||
| rn = HuExcelParser.row_number(r["name"], MINIO.get(r["kb_id"], r["location"])) | |||
| for i in range(0, rn, 3000): | |||
| @@ -75,7 +75,7 @@ def set_progress(task_id, from_page=0, to_page=-1, | |||
| if to_page > 0: | |||
| if msg: | |||
| msg = f"Page({from_page}~{to_page}): " + msg | |||
| msg = f"Page({from_page+1}~{to_page+1}): " + msg | |||
| d = {"progress_msg": msg} | |||
| if prog is not None: | |||
| d["progress"] = prog | |||
| @@ -0,0 +1,133 @@ | |||
| accelerate==0.27.2 | |||
| aiohttp==3.9.3 | |||
| aiosignal==1.3.1 | |||
| annotated-types==0.6.0 | |||
| anyio==4.3.0 | |||
| argon2-cffi==23.1.0 | |||
| argon2-cffi-bindings==21.2.0 | |||
| Aspose.Slides==24.2.0 | |||
| attrs==23.2.0 | |||
| blinker==1.7.0 | |||
| cachelib==0.12.0 | |||
| cachetools==5.3.3 | |||
| certifi==2024.2.2 | |||
| cffi==1.16.0 | |||
| charset-normalizer==3.3.2 | |||
| click==8.1.7 | |||
| coloredlogs==15.0.1 | |||
| cryptography==42.0.5 | |||
| dashscope==1.14.1 | |||
| datasets==2.17.1 | |||
| datrie==0.8.2 | |||
| demjson==2.2.4 | |||
| dill==0.3.8 | |||
| distro==1.9.0 | |||
| elastic-transport==8.12.0 | |||
| elasticsearch==8.12.1 | |||
| elasticsearch-dsl==8.12.0 | |||
| et-xmlfile==1.1.0 | |||
| filelock==3.13.1 | |||
| FlagEmbedding==1.2.5 | |||
| Flask==3.0.2 | |||
| Flask-Cors==4.0.0 | |||
| Flask-Login==0.6.3 | |||
| Flask-Session==0.6.0 | |||
| flatbuffers==23.5.26 | |||
| frozenlist==1.4.1 | |||
| fsspec==2023.10.0 | |||
| h11==0.14.0 | |||
| hanziconv==0.3.2 | |||
| httpcore==1.0.4 | |||
| httpx==0.27.0 | |||
| huggingface-hub==0.20.3 | |||
| humanfriendly==10.0 | |||
| idna==3.6 | |||
| install==1.3.5 | |||
| itsdangerous==2.1.2 | |||
| Jinja2==3.1.3 | |||
| joblib==1.3.2 | |||
| lxml==5.1.0 | |||
| MarkupSafe==2.1.5 | |||
| minio==7.2.4 | |||
| mpi4py==3.1.5 | |||
| mpmath==1.3.0 | |||
| multidict==6.0.5 | |||
| multiprocess==0.70.16 | |||
| networkx==3.2.1 | |||
| nltk==3.8.1 | |||
| numpy==1.26.4 | |||
| nvidia-cublas-cu12==12.1.3.1 | |||
| nvidia-cuda-cupti-cu12==12.1.105 | |||
| nvidia-cuda-nvrtc-cu12==12.1.105 | |||
| nvidia-cuda-runtime-cu12==12.1.105 | |||
| nvidia-cudnn-cu12==8.9.2.26 | |||
| nvidia-cufft-cu12==11.0.2.54 | |||
| nvidia-curand-cu12==10.3.2.106 | |||
| nvidia-cusolver-cu12==11.4.5.107 | |||
| nvidia-cusparse-cu12==12.1.0.106 | |||
| nvidia-nccl-cu12==2.19.3 | |||
| nvidia-nvjitlink-cu12==12.3.101 | |||
| nvidia-nvtx-cu12==12.1.105 | |||
| onnxruntime-gpu==1.17.1 | |||
| openai==1.12.0 | |||
| opencv-python==4.9.0.80 | |||
| openpyxl==3.1.2 | |||
| packaging==23.2 | |||
| pandas==2.2.1 | |||
| pdfminer.six==20221105 | |||
| pdfplumber==0.10.4 | |||
| peewee==3.17.1 | |||
| pillow==10.2.0 | |||
| protobuf==4.25.3 | |||
| psutil==5.9.8 | |||
| pyarrow==15.0.0 | |||
| pyarrow-hotfix==0.6 | |||
| pyclipper==1.3.0.post5 | |||
| pycparser==2.21 | |||
| pycryptodome==3.20.0 | |||
| pycryptodome-test-vectors==1.0.14 | |||
| pycryptodomex==3.20.0 | |||
| pydantic==2.6.2 | |||
| pydantic_core==2.16.3 | |||
| PyJWT==2.8.0 | |||
| PyMuPDF==1.23.25 | |||
| PyMuPDFb==1.23.22 | |||
| PyMySQL==1.1.0 | |||
| PyPDF2==3.0.1 | |||
| pypdfium2==4.27.0 | |||
| python-dateutil==2.8.2 | |||
| python-docx==1.1.0 | |||
| python-dotenv==1.0.1 | |||
| python-pptx==0.6.23 | |||
| pytz==2024.1 | |||
| PyYAML==6.0.1 | |||
| regex==2023.12.25 | |||
| requests==2.31.0 | |||
| ruamel.yaml==0.18.6 | |||
| ruamel.yaml.clib==0.2.8 | |||
| safetensors==0.4.2 | |||
| scikit-learn==1.4.1.post1 | |||
| scipy==1.12.0 | |||
| sentence-transformers==2.4.0 | |||
| shapely==2.0.3 | |||
| six==1.16.0 | |||
| sniffio==1.3.1 | |||
| StrEnum==0.4.15 | |||
| sympy==1.12 | |||
| threadpoolctl==3.3.0 | |||
| tiktoken==0.6.0 | |||
| tokenizers==0.15.2 | |||
| torch==2.2.1 | |||
| tqdm==4.66.2 | |||
| transformers==4.38.1 | |||
| triton==2.2.0 | |||
| typing_extensions==4.10.0 | |||
| tzdata==2024.1 | |||
| urllib3==2.2.1 | |||
| Werkzeug==3.0.1 | |||
| xgboost==2.0.3 | |||
| XlsxWriter==3.2.0 | |||
| xpinyin==0.7.6 | |||
| xxhash==3.4.1 | |||
| yarl==1.9.4 | |||
| zhipuai==2.0.1 | |||
| @@ -193,7 +193,7 @@ const ChunkMethodModal: React.FC<IProps> = ({ | |||
| rules={[ | |||
| { | |||
| required: true, | |||
| message: 'Missing end page number(excluding)', | |||
| message: 'Missing end page number(excluded)', | |||
| }, | |||
| ({ getFieldValue }) => ({ | |||
| validator(_, value) { | |||
| @@ -120,7 +120,7 @@ export const TextMap = { | |||
| </p><p> | |||
| For a document, it will be treated as an entire chunk, no split at all. | |||
| </p><p> | |||
| If you don't trust any chunk method and the selected LLM's context length covers the document length, you can try this method. | |||
| If you want to summarize something that needs all the context of an article and the selected LLM's context length covers the document length, you can try this method. | |||
| </p>`, | |||
| }, | |||
| }; | |||