| @@ -118,14 +118,13 @@ def message_fit_in(msg, max_length=4000): | |||
| c = count() | |||
| if c < max_length: return c, msg | |||
| msg = [m for m in msg if m.role in ["system", "user"]] | |||
| c = count() | |||
| if c < max_length: return c, msg | |||
| msg_ = [m for m in msg[:-1] if m.role == "system"] | |||
| msg_.append(msg[-1]) | |||
| msg = msg_ | |||
| c = count() | |||
| if c < max_length: return c, msg | |||
| ll = num_tokens_from_string(msg_[0].content) | |||
| l = num_tokens_from_string(msg_[-1].content) | |||
| if ll / (ll + l) > 0.8: | |||
| @@ -218,7 +218,7 @@ def rm(): | |||
| ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id)) | |||
| DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0) | |||
| if not DocumentService.delete_by_id(req["doc_id"]): | |||
| if not DocumentService.delete(doc): | |||
| return get_data_error_result( | |||
| retmsg="Database error (Document removal)!") | |||
| @@ -353,7 +353,7 @@ class User(DataBaseModel, UserMixin): | |||
| email = CharField(max_length=255, null=False, help_text="email", index=True) | |||
| avatar = TextField(null=True, help_text="avatar base64 string") | |||
| language = CharField(max_length=32, null=True, help_text="English|Chinese", default="Chinese") | |||
| color_schema = CharField(max_length=32, null=True, help_text="Bright|Dark", default="Dark") | |||
| color_schema = CharField(max_length=32, null=True, help_text="Bright|Dark", default="Bright") | |||
| timezone = CharField(max_length=64, null=True, help_text="Timezone", default="UTC+8\tAsia/Shanghai") | |||
| last_login_time = DateTimeField(null=True) | |||
| is_authenticated = CharField(max_length=1, null=False, default="1") | |||
| @@ -223,7 +223,7 @@ def init_llm_factory(): | |||
| "fid": factory_infos[3]["name"], | |||
| "llm_name": "qwen-14B-chat", | |||
| "tags": "LLM,CHAT,", | |||
| "max_tokens": 8191, | |||
| "max_tokens": 4096, | |||
| "model_type": LLMType.CHAT.value | |||
| }, { | |||
| "fid": factory_infos[3]["name"], | |||
| @@ -271,11 +271,15 @@ def init_llm_factory(): | |||
| pass | |||
| """ | |||
| modify service_config | |||
| drop table llm; | |||
| drop table factories; | |||
| drop table llm_factories; | |||
| update tenant_llm set llm_factory='Tongyi-Qianwen' where llm_factory='通义千问'; | |||
| update tenant_llm set llm_factory='ZHIPU-AI' where llm_factory='智谱AI'; | |||
| update tenant set parser_ids='naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture'; | |||
| alter table knowledgebase modify avatar longtext; | |||
| alter table user modify avatar longtext; | |||
| alter table dialog modify icon longtext; | |||
| """ | |||
| @@ -60,6 +60,15 @@ class DocumentService(CommonService): | |||
| raise RuntimeError("Database error (Knowledgebase)!") | |||
| return doc | |||
| @classmethod | |||
| @DB.connection_context() | |||
| def delete(cls, doc): | |||
| e, kb = KnowledgebaseService.get_by_id(doc.kb_id) | |||
| if not KnowledgebaseService.update_by_id( | |||
| kb.id, {"doc_num": kb.doc_num - 1}): | |||
| raise RuntimeError("Database error (Knowledgebase)!") | |||
| return cls.delete_by_id(doc.id) | |||
| @classmethod | |||
| @DB.connection_context() | |||
| def get_newly_uploaded(cls, tm, mod=0, comm=1, items_per_page=64): | |||
| @@ -11,7 +11,7 @@ import logging | |||
| from PIL import Image, ImageDraw | |||
| import numpy as np | |||
| from api.db import ParserType | |||
| from PyPDF2 import PdfReader as pdf2_read | |||
| from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer | |||
| from rag.nlp import huqie | |||
| from copy import deepcopy | |||
| @@ -288,9 +288,9 @@ class HuParser: | |||
| for b in bxs]) | |||
| self.boxes.append(bxs) | |||
| def _layouts_rec(self, ZM): | |||
| def _layouts_rec(self, ZM, drop=True): | |||
| assert len(self.page_images) == len(self.boxes) | |||
| self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM) | |||
| self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM, drop=drop) | |||
| # cumlative Y | |||
| for i in range(len(self.boxes)): | |||
| self.boxes[i]["top"] += \ | |||
| @@ -908,6 +908,23 @@ class HuParser: | |||
| self.page_images.append(img) | |||
| self.page_chars.append([]) | |||
| self.outlines = [] | |||
| try: | |||
| self.pdf = pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm)) | |||
| outlines = self.pdf.outline | |||
| def dfs(arr, depth): | |||
| for a in arr: | |||
| if isinstance(a, dict): | |||
| self.outlines.append((a["/Title"], depth)) | |||
| continue | |||
| dfs(a, depth+1) | |||
| dfs(outlines, 0) | |||
| except Exception as e: | |||
| logging.warning(f"Outlines exception: {e}") | |||
| if not self.outlines: | |||
| logging.warning(f"Miss outlines") | |||
| logging.info("Images converted.") | |||
| self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join( | |||
| random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in | |||
| @@ -39,7 +39,7 @@ class LayoutRecognizer(Recognizer): | |||
| super().__init__(self.labels, domain, os.path.join(get_project_base_directory(), "rag/res/deepdoc/")) | |||
| self.garbage_layouts = ["footer", "header", "reference"] | |||
| def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16): | |||
| def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True): | |||
| def __is_garbage(b): | |||
| patt = [r"^•+$", r"(版权归©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$", | |||
| r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}", | |||
| @@ -88,7 +88,11 @@ class LayoutRecognizer(Recognizer): | |||
| i += 1 | |||
| continue | |||
| lts_[ii]["visited"] = True | |||
| if lts_[ii]["type"] in self.garbage_layouts: | |||
| keep_feats = [ | |||
| lts_[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1]*0.9/scale_factor, | |||
| lts_[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1]*0.1/scale_factor, | |||
| ] | |||
| if drop and lts_[ii]["type"] in self.garbage_layouts and not any(keep_feats): | |||
| if lts_[ii]["type"] not in garbages: | |||
| garbages[lts_[ii]["type"]] = [] | |||
| garbages[lts_[ii]["type"]].append(bxs[i]["text"]) | |||
| @@ -51,15 +51,30 @@ class Pdf(PdfParser): | |||
| # set pivot using the most frequent type of title, | |||
| # then merge between 2 pivot | |||
| bull = bullets_category([b["text"] for b in self.boxes]) | |||
| most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes]) | |||
| if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1: | |||
| max_lvl = max([lvl for _, lvl in self.outlines]) | |||
| most_level = max(0, max_lvl-1) | |||
| levels = [] | |||
| for b in self.boxes: | |||
| for t,lvl in self.outlines: | |||
| tks = set([t[i]+t[i+1] for i in range(len(t)-1)]) | |||
| tks_ = set([b["text"][i]+b["text"][i+1] for i in range(min(len(t), len(b["text"])-1))]) | |||
| if len(set(tks & tks_))/max([len(tks), len(tks_), 1]) > 0.8: | |||
| levels.append(lvl) | |||
| break | |||
| else: | |||
| levels.append(max_lvl + 1) | |||
| else: | |||
| bull = bullets_category([b["text"] for b in self.boxes]) | |||
| most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes]) | |||
| assert len(self.boxes) == len(levels) | |||
| sec_ids = [] | |||
| sid = 0 | |||
| for i, lvl in enumerate(levels): | |||
| if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1 | |||
| sec_ids.append(sid) | |||
| #print(lvl, self.boxes[i]["text"], most_level) | |||
| #print(lvl, self.boxes[i]["text"], most_level, sid) | |||
| sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)] | |||
| for (img, rows), poss in tbls: | |||
| @@ -67,13 +82,16 @@ class Pdf(PdfParser): | |||
| chunks = [] | |||
| last_sid = -2 | |||
| tk_cnt = 0 | |||
| for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])): | |||
| poss = "\t".join([tag(*pos) for pos in poss]) | |||
| if sec_id == last_sid or sec_id == -1: | |||
| if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1): | |||
| if chunks: | |||
| chunks[-1] += "\n" + txt + poss | |||
| tk_cnt += num_tokens_from_string(txt) | |||
| continue | |||
| chunks.append(txt + poss) | |||
| tk_cnt = num_tokens_from_string(txt) | |||
| if sec_id >-1: last_sid = sec_id | |||
| return chunks, tbls | |||
| @@ -97,37 +115,17 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca | |||
| # is it English | |||
| eng = lang.lower() == "english"#pdf_parser.is_english | |||
| i = 0 | |||
| chunk = [] | |||
| tk_cnt = 0 | |||
| res = tokenize_table(tbls, doc, eng) | |||
| def add_chunk(): | |||
| nonlocal chunk, res, doc, pdf_parser, tk_cnt | |||
| for ck in cks: | |||
| d = copy.deepcopy(doc) | |||
| ck = "\n".join(chunk) | |||
| tokenize(d, pdf_parser.remove_tag(ck), eng) | |||
| d["image"], poss = pdf_parser.crop(ck, need_position=True) | |||
| add_positions(d, poss) | |||
| tokenize(d, pdf_parser.remove_tag(ck), eng) | |||
| res.append(d) | |||
| chunk = [] | |||
| tk_cnt = 0 | |||
| while i < len(cks): | |||
| if tk_cnt > 256: add_chunk() | |||
| txt = cks[i] | |||
| txt_ = pdf_parser.remove_tag(txt) | |||
| i += 1 | |||
| cnt = num_tokens_from_string(txt_) | |||
| chunk.append(txt) | |||
| tk_cnt += cnt | |||
| if chunk: add_chunk() | |||
| for i, d in enumerate(res): | |||
| print(d) | |||
| # d["image"].save(f"./logs/{i}.jpg") | |||
| return res | |||
| if __name__ == "__main__": | |||
| import sys | |||
| def dummy(prog=None, msg=""): | |||
| @@ -10,12 +10,10 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # | |||
| import copy | |||
| import re | |||
| from rag.app import laws | |||
| from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table, add_positions | |||
| from rag.nlp import huqie, tokenize | |||
| from deepdoc.parser import PdfParser, ExcelParser | |||
| from rag.settings import cron_logger | |||
| class Pdf(PdfParser): | |||
| @@ -33,7 +31,7 @@ class Pdf(PdfParser): | |||
| from timeit import default_timer as timer | |||
| start = timer() | |||
| self._layouts_rec(zoomin) | |||
| self._layouts_rec(zoomin, drop=False) | |||
| callback(0.63, "Layout analysis finished.") | |||
| print("paddle layouts:", timer() - start) | |||
| self._table_transformer_job(zoomin) | |||
| @@ -215,7 +215,7 @@ class Dealer: | |||
| else: | |||
| pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer) | |||
| for i in range(1, len(pieces)): | |||
| if re.match(r"[a-z][.?;!][ \n]", pieces[i]): | |||
| if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]): | |||
| pieces[i - 1] += pieces[i][0] | |||
| pieces[i] = pieces[i][1:] | |||
| idx = [] | |||
| @@ -243,7 +243,8 @@ class Dealer: | |||
| chunks_tks, | |||
| tkweight, vtweight) | |||
| mx = np.max(sim) * 0.99 | |||
| if mx < 0.65: | |||
| es_logger.info("{} SIM: {}".format(pieces_[i], mx)) | |||
| if mx < 0.63: | |||
| continue | |||
| cites[idx[i]] = list( | |||
| set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4] | |||
| @@ -82,8 +82,8 @@ def dispatch(): | |||
| tsks = [] | |||
| if r["type"] == FileType.PDF.value: | |||
| pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"])) | |||
| page_size = 5 | |||
| if r["parser_id"] == "paper": page_size = 12 | |||
| page_size = 12 | |||
| if r["parser_id"] == "paper": page_size = 22 | |||
| if r["parser_id"] == "one": page_size = 1000000000 | |||
| for s,e in r["parser_config"].get("pages", [(0,100000)]): | |||
| e = min(e, pages) | |||