| from flask import request | from flask import request | ||||
| from flask_login import login_required, current_user | from flask_login import login_required, current_user | ||||
| from api.db.db_models import Task | |||||
| from api.db.services.task_service import TaskService | |||||
| from rag.nlp import search | from rag.nlp import search | ||||
| from rag.utils import ELASTICSEARCH | from rag.utils import ELASTICSEARCH | ||||
| from api.db.services import duplicate_name | from api.db.services import duplicate_name | ||||
| return server_error_response(e) | return server_error_response(e) | ||||
| @manager.route('/run', methods=['POST']) | |||||
| @login_required | |||||
| @validate_request("doc_ids", "run") | |||||
| def rm(): | |||||
| req = request.json | |||||
| try: | |||||
| for id in req["doc_ids"]: | |||||
| DocumentService.update_by_id(id, {"run": str(req["run"])}) | |||||
| if req["run"] == "2": | |||||
| TaskService.filter_delete([Task.doc_id == id]) | |||||
| tenant_id = DocumentService.get_tenant_id(id) | |||||
| if not tenant_id: | |||||
| return get_data_error_result(retmsg="Tenant not found!") | |||||
| ELASTICSEARCH.deleteByQuery(Q("match", doc_id=id), idxnm=search.index_name(tenant_id)) | |||||
| return get_json_result(data=True) | |||||
| except Exception as e: | |||||
| return server_error_response(e) | |||||
| @manager.route('/rename', methods=['POST']) | @manager.route('/rename', methods=['POST']) | ||||
| @login_required | @login_required | ||||
| @validate_request("doc_id", "name", "old_name") | @validate_request("doc_id", "name", "old_name") | ||||
| if doc.parser_id.lower() == req["parser_id"].lower(): | if doc.parser_id.lower() == req["parser_id"].lower(): | ||||
| return get_json_result(data=True) | return get_json_result(data=True) | ||||
| e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": ""}) | |||||
| e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": "", "run": 1}) | |||||
| if not e: | if not e: | ||||
| return get_data_error_result(retmsg="Document not found!") | return get_data_error_result(retmsg="Document not found!") | ||||
| e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1) | e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1) |
| PRECISE = 'Precise' | PRECISE = 'Precise' | ||||
| EVENLY = 'Evenly' | EVENLY = 'Evenly' | ||||
| CUSTOM = 'Custom' | CUSTOM = 'Custom' | ||||
| class ParserType(StrEnum): | |||||
| GENERAL = "general" | |||||
| PRESENTATION = "presentation" | |||||
| LAWS = "laws" | |||||
| MANUAL = "manual" | |||||
| PAPER = "paper" | |||||
| RESUME = "" | |||||
| BOOK = "" | |||||
| QA = "" |
| token_num = IntegerField(default=0) | token_num = IntegerField(default=0) | ||||
| chunk_num = IntegerField(default=0) | chunk_num = IntegerField(default=0) | ||||
| progress = FloatField(default=0) | progress = FloatField(default=0) | ||||
| progress_msg = CharField(max_length=255, null=True, help_text="process message", default="") | |||||
| progress_msg = CharField(max_length=512, null=True, help_text="process message", default="") | |||||
| process_begin_at = DateTimeField(null=True) | process_begin_at = DateTimeField(null=True) | ||||
| process_duation = FloatField(default=0) | process_duation = FloatField(default=0) | ||||
| run = CharField(max_length=1, null=True, help_text="start to run processing or cancel.(1: run it; 2: cancel)", default="0") | |||||
| status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1") | status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1") | ||||
| class Meta: | class Meta: | ||||
| db_table = "document" | db_table = "document" | ||||
| class Task(DataBaseModel): | |||||
| id = CharField(max_length=32, primary_key=True) | |||||
| doc_id = CharField(max_length=32, null=False, index=True) | |||||
| from_page = IntegerField(default=0) | |||||
| to_page = IntegerField(default=-1) | |||||
| begin_at = DateTimeField(null=True) | |||||
| process_duation = FloatField(default=0) | |||||
| progress = FloatField(default=0) | |||||
| progress_msg = CharField(max_length=255, null=True, help_text="process message", default="") | |||||
| class Dialog(DataBaseModel): | class Dialog(DataBaseModel): | ||||
| id = CharField(max_length=32, primary_key=True) | id = CharField(max_length=32, primary_key=True) | ||||
| tenant_id = CharField(max_length=32, null=False) | tenant_id = CharField(max_length=32, null=False) | ||||
| """ | """ | ||||
| class Job(DataBaseModel): | |||||
| # multi-party common configuration | |||||
| f_user_id = CharField(max_length=25, null=True) | |||||
| f_job_id = CharField(max_length=25, index=True) | |||||
| f_name = CharField(max_length=500, null=True, default='') | |||||
| f_description = TextField(null=True, default='') | |||||
| f_tag = CharField(max_length=50, null=True, default='') | |||||
| f_dsl = JSONField() | |||||
| f_runtime_conf = JSONField() | |||||
| f_runtime_conf_on_party = JSONField() | |||||
| f_train_runtime_conf = JSONField(null=True) | |||||
| f_roles = JSONField() | |||||
| f_initiator_role = CharField(max_length=50) | |||||
| f_initiator_party_id = CharField(max_length=50) | |||||
| f_status = CharField(max_length=50) | |||||
| f_status_code = IntegerField(null=True) | |||||
| f_user = JSONField() | |||||
| # this party configuration | |||||
| f_role = CharField(max_length=50, index=True) | |||||
| f_party_id = CharField(max_length=10, index=True) | |||||
| f_is_initiator = BooleanField(null=True, default=False) | |||||
| f_progress = IntegerField(null=True, default=0) | |||||
| f_ready_signal = BooleanField(default=False) | |||||
| f_ready_time = BigIntegerField(null=True) | |||||
| f_cancel_signal = BooleanField(default=False) | |||||
| f_cancel_time = BigIntegerField(null=True) | |||||
| f_rerun_signal = BooleanField(default=False) | |||||
| f_end_scheduling_updates = IntegerField(null=True, default=0) | |||||
| f_engine_name = CharField(max_length=50, null=True) | |||||
| f_engine_type = CharField(max_length=10, null=True) | |||||
| f_cores = IntegerField(default=0) | |||||
| f_memory = IntegerField(default=0) # MB | |||||
| f_remaining_cores = IntegerField(default=0) | |||||
| f_remaining_memory = IntegerField(default=0) # MB | |||||
| f_resource_in_use = BooleanField(default=False) | |||||
| f_apply_resource_time = BigIntegerField(null=True) | |||||
| f_return_resource_time = BigIntegerField(null=True) | |||||
| f_inheritance_info = JSONField(null=True) | |||||
| f_inheritance_status = CharField(max_length=50, null=True) | |||||
| f_start_time = BigIntegerField(null=True) | |||||
| f_start_date = DateTimeField(null=True) | |||||
| f_end_time = BigIntegerField(null=True) | |||||
| f_end_date = DateTimeField(null=True) | |||||
| f_elapsed = BigIntegerField(null=True) | |||||
| class Meta: | |||||
| db_table = "t_job" | |||||
| primary_key = CompositeKey('f_job_id', 'f_role', 'f_party_id') | |||||
| class PipelineComponentMeta(DataBaseModel): | |||||
| f_model_id = CharField(max_length=100, index=True) | |||||
| f_model_version = CharField(max_length=100, index=True) | |||||
| f_role = CharField(max_length=50, index=True) | |||||
| f_party_id = CharField(max_length=10, index=True) | |||||
| f_component_name = CharField(max_length=100, index=True) | |||||
| f_component_module_name = CharField(max_length=100) | |||||
| f_model_alias = CharField(max_length=100, index=True) | |||||
| f_model_proto_index = JSONField(null=True) | |||||
| f_run_parameters = JSONField(null=True) | |||||
| f_archive_sha256 = CharField(max_length=100, null=True) | |||||
| f_archive_from_ip = CharField(max_length=100, null=True) | |||||
| class Meta: | class Meta: | ||||
| db_table = 't_pipeline_component_meta' | db_table = 't_pipeline_component_meta' |
| def bulk_insert_into_db(model, data_source, replace_on_conflict=False): | def bulk_insert_into_db(model, data_source, replace_on_conflict=False): | ||||
| DB.create_tables([model]) | DB.create_tables([model]) | ||||
| current_time = current_timestamp() | |||||
| current_date = timestamp_to_date(current_time) | |||||
| for data in data_source: | for data in data_source: | ||||
| if 'f_create_time' not in data: | |||||
| data['f_create_time'] = current_time | |||||
| data['f_create_date'] = timestamp_to_date(data['f_create_time']) | |||||
| data['f_update_time'] = current_time | |||||
| data['f_update_date'] = current_date | |||||
| current_time = current_timestamp() | |||||
| current_date = timestamp_to_date(current_time) | |||||
| if 'create_time' not in data: | |||||
| data['create_time'] = current_time | |||||
| data['create_date'] = timestamp_to_date(data['create_time']) | |||||
| data['update_time'] = current_time | |||||
| data['update_date'] = current_date | |||||
| preserve = tuple(data_source[0].keys() - {'f_create_time', 'f_create_date'}) | |||||
| preserve = tuple(data_source[0].keys() - {'create_time', 'create_date'}) | |||||
| batch_size = 50 if RuntimeConfig.USE_LOCAL_DATABASE else 1000 | |||||
| batch_size = 1000 | |||||
| for i in range(0, len(data_source), batch_size): | for i in range(0, len(data_source), batch_size): | ||||
| with DB.atomic(): | with DB.atomic(): |
| @DB.connection_context() | @DB.connection_context() | ||||
| def insert_many(cls, data_list, batch_size=100): | def insert_many(cls, data_list, batch_size=100): | ||||
| with DB.atomic(): | with DB.atomic(): | ||||
| for d in data_list: d["create_time"] = datetime_format(datetime.now()) | |||||
| for i in range(0, len(data_list), batch_size): | for i in range(0, len(data_list), batch_size): | ||||
| cls.model.insert_many(data_list[i:i + batch_size]).execute() | cls.model.insert_many(data_list[i:i + batch_size]).execute() | ||||
| @classmethod | @classmethod | ||||
| @DB.connection_context() | @DB.connection_context() | ||||
| def get_newly_uploaded(cls, tm, mod, comm, items_per_page=64): | |||||
| fields = [cls.model.id, cls.model.kb_id, cls.model.parser_id, cls.model.name, cls.model.location, cls.model.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, cls.model.update_time] | |||||
| def get_newly_uploaded(cls, tm, mod=0, comm=1, items_per_page=64): | |||||
| fields = [cls.model.id, cls.model.kb_id, cls.model.parser_id, cls.model.name, cls.model.type, cls.model.location, cls.model.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, Tenant.asr_id, cls.model.update_time] | |||||
| docs = cls.model.select(*fields) \ | docs = cls.model.select(*fields) \ | ||||
| .join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \ | .join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \ | ||||
| .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\ | .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\ | ||||
| .paginate(1, items_per_page) | .paginate(1, items_per_page) | ||||
| return list(docs.dicts()) | return list(docs.dicts()) | ||||
| @classmethod | |||||
| @DB.connection_context() | |||||
| def get_unfinished_docs(cls): | |||||
| fields = [cls.model.id, cls.model.process_begin_at] | |||||
| docs = cls.model.select(*fields) \ | |||||
| .where( | |||||
| cls.model.status == StatusEnum.VALID.value, | |||||
| ~(cls.model.type == FileType.VIRTUAL.value), | |||||
| cls.model.progress < 1, | |||||
| cls.model.progress > 0) | |||||
| return list(docs.dicts()) | |||||
| @classmethod | @classmethod | ||||
| @DB.connection_context() | @DB.connection_context() | ||||
| def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation): | def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation): |
| # | |||||
| # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # | |||||
| from peewee import Expression | |||||
| from api.db.db_models import DB | |||||
| from api.db import StatusEnum, FileType | |||||
| from api.db.db_models import Task, Document, Knowledgebase, Tenant | |||||
| from api.db.services.common_service import CommonService | |||||
| class TaskService(CommonService): | |||||
| model = Task | |||||
| @classmethod | |||||
| @DB.connection_context() | |||||
| def get_tasks(cls, tm, mod=0, comm=1, items_per_page=64): | |||||
| fields = [cls.model.id, cls.model.doc_id, cls.model.from_page,cls.model.to_page, Document.kb_id, Document.parser_id, Document.name, Document.type, Document.location, Document.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, Tenant.asr_id, cls.model.update_time] | |||||
| docs = cls.model.select(*fields) \ | |||||
| .join(Document, on=(cls.model.doc_id == Document.id)) \ | |||||
| .join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id)) \ | |||||
| .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\ | |||||
| .where( | |||||
| Document.status == StatusEnum.VALID.value, | |||||
| ~(Document.type == FileType.VIRTUAL.value), | |||||
| cls.model.progress == 0, | |||||
| cls.model.update_time >= tm, | |||||
| (Expression(cls.model.create_time, "%%", comm) == mod))\ | |||||
| .order_by(cls.model.update_time.asc())\ | |||||
| .paginate(1, items_per_page) | |||||
| return list(docs.dicts()) | |||||
| @classmethod | |||||
| @DB.connection_context() | |||||
| def do_cancel(cls, id): | |||||
| try: | |||||
| cls.model.get_by_id(id) | |||||
| return False | |||||
| except Exception as e: | |||||
| pass | |||||
| return True |
| d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)]) | d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)]) | ||||
| else: | else: | ||||
| d["content_ltks"] = huqie.qie(t) | d["content_ltks"] = huqie.qie(t) | ||||
| d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) | |||||
| d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) | |||||
| zoomin, | zoomin, | ||||
| from_page, | from_page, | ||||
| to_page) | to_page) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, | |||||
| "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.1, "OCR finished", callback) | |||||
| from timeit import default_timer as timer | from timeit import default_timer as timer | ||||
| start = timer() | start = timer() | ||||
| self._layouts_paddle(zoomin) | self._layouts_paddle(zoomin) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, | |||||
| "Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.77, "Layout analysis finished", callback) | |||||
| print("paddle layouts:", timer()-start) | print("paddle layouts:", timer()-start) | ||||
| bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3) | bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3) | ||||
| # is it English | # is it English | ||||
| b["x1"] = max(b["x1"], b_["x1"]) | b["x1"] = max(b["x1"], b_["x1"]) | ||||
| bxs.pop(i + 1) | bxs.pop(i + 1) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, | |||||
| "Page {}~{}: Text extraction finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.8, "Text extraction finished", callback) | |||||
| return [b["text"] + self._line_tag(b, zoomin) for b in bxs] | return [b["text"] + self._line_tag(b, zoomin) for b in bxs] | ||||
| pdf_parser = None | pdf_parser = None | ||||
| sections = [] | sections = [] | ||||
| if re.search(r"\.docx?$", filename, re.IGNORECASE): | if re.search(r"\.docx?$", filename, re.IGNORECASE): | ||||
| callback__(0.1, "Start to parse.", callback) | |||||
| for txt in Docx()(filename, binary): | for txt in Docx()(filename, binary): | ||||
| sections.append(txt) | sections.append(txt) | ||||
| if re.search(r"\.pdf$", filename, re.IGNORECASE): | |||||
| callback__(0.8, "Finish parsing.", callback) | |||||
| elif re.search(r"\.pdf$", filename, re.IGNORECASE): | |||||
| pdf_parser = Pdf() | pdf_parser = Pdf() | ||||
| for txt in pdf_parser(filename if not binary else binary, | for txt in pdf_parser(filename if not binary else binary, | ||||
| from_page=from_page, to_page=to_page, callback=callback): | from_page=from_page, to_page=to_page, callback=callback): | ||||
| sections.append(txt) | sections.append(txt) | ||||
| if re.search(r"\.txt$", filename, re.IGNORECASE): | |||||
| elif re.search(r"\.txt$", filename, re.IGNORECASE): | |||||
| callback__(0.1, "Start to parse.", callback) | |||||
| txt = "" | txt = "" | ||||
| if binary:txt = binary.decode("utf-8") | if binary:txt = binary.decode("utf-8") | ||||
| else: | else: | ||||
| txt += l | txt += l | ||||
| sections = txt.split("\n") | sections = txt.split("\n") | ||||
| sections = [l for l in sections if l] | sections = [l for l in sections if l] | ||||
| callback__(0.8, "Finish parsing.", callback) | |||||
| else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)") | |||||
| # is it English | # is it English | ||||
| eng = is_english(sections) | eng = is_english(sections) |
| import copy | import copy | ||||
| import re | import re | ||||
| from collections import Counter | |||||
| from rag.app import callback__, bullets_category, BULLET_PATTERN, is_english, tokenize | |||||
| from rag.nlp import huqie, stemmer | |||||
| from rag.parser.docx_parser import HuDocxParser | |||||
| from rag.app import callback__, tokenize | |||||
| from rag.nlp import huqie | |||||
| from rag.parser.pdf_parser import HuParser | from rag.parser.pdf_parser import HuParser | ||||
| from nltk.tokenize import word_tokenize | |||||
| import numpy as np | |||||
| from rag.utils import num_tokens_from_string | from rag.utils import num_tokens_from_string | ||||
| zoomin, | zoomin, | ||||
| from_page, | from_page, | ||||
| to_page) | to_page) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||||
| "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.2, "OCR finished.", callback) | |||||
| from timeit import default_timer as timer | from timeit import default_timer as timer | ||||
| start = timer() | start = timer() | ||||
| self._layouts_paddle(zoomin) | self._layouts_paddle(zoomin) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||||
| "Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.5, "Layout analysis finished.", callback) | |||||
| print("paddle layouts:", timer() - start) | print("paddle layouts:", timer() - start) | ||||
| self._table_transformer_job(zoomin) | self._table_transformer_job(zoomin) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||||
| "Page {}~{}: Table analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.7, "Table analysis finished.", callback) | |||||
| self._text_merge() | self._text_merge() | ||||
| column_width = np.median([b["x1"] - b["x0"] for b in self.boxes]) | |||||
| self._concat_downward(concat_between_pages=False) | self._concat_downward(concat_between_pages=False) | ||||
| self._filter_forpages() | self._filter_forpages() | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||||
| "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.77, "Text merging finished", callback) | |||||
| tbls = self._extract_table_figure(True, zoomin, False) | tbls = self._extract_table_figure(True, zoomin, False) | ||||
| # clean mess | # clean mess | ||||
| b_["top"] = b["top"] | b_["top"] = b["top"] | ||||
| self.boxes.pop(i) | self.boxes.pop(i) | ||||
| callback__(0.8, "Parsing finished", callback) | |||||
| for b in self.boxes: print(b["text"], b.get("layoutno")) | for b in self.boxes: print(b["text"], b.get("layoutno")) | ||||
| print(tbls) | print(tbls) | ||||
| pdf_parser = Pdf() | pdf_parser = Pdf() | ||||
| cks, tbls = pdf_parser(filename if not binary else binary, | cks, tbls = pdf_parser(filename if not binary else binary, | ||||
| from_page=from_page, to_page=to_page, callback=callback) | from_page=from_page, to_page=to_page, callback=callback) | ||||
| else: raise NotImplementedError("file type not supported yet(pdf supported)") | |||||
| doc = { | doc = { | ||||
| "docnm_kwd": filename | "docnm_kwd": filename | ||||
| } | } |
| zoomin, | zoomin, | ||||
| from_page, | from_page, | ||||
| to_page) | to_page) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||||
| "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.2, "OCR finished.", callback) | |||||
| from timeit import default_timer as timer | from timeit import default_timer as timer | ||||
| start = timer() | start = timer() | ||||
| self._layouts_paddle(zoomin) | self._layouts_paddle(zoomin) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||||
| "Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.47, "Layout analysis finished", callback) | |||||
| print("paddle layouts:", timer() - start) | print("paddle layouts:", timer() - start) | ||||
| self._table_transformer_job(zoomin) | self._table_transformer_job(zoomin) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||||
| "Page {}~{}: Table analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.68, "Table analysis finished", callback) | |||||
| self._text_merge() | self._text_merge() | ||||
| column_width = np.median([b["x1"] - b["x0"] for b in self.boxes]) | column_width = np.median([b["x1"] - b["x0"] for b in self.boxes]) | ||||
| self._concat_downward(concat_between_pages=False) | self._concat_downward(concat_between_pages=False) | ||||
| self._filter_forpages() | self._filter_forpages() | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||||
| "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.75, "Text merging finished.", callback) | |||||
| tbls = self._extract_table_figure(True, zoomin, False) | tbls = self._extract_table_figure(True, zoomin, False) | ||||
| # clean mess | # clean mess | ||||
| break | break | ||||
| if not abstr: i = 0 | if not abstr: i = 0 | ||||
| callback__(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| for b in self.boxes: print(b["text"], b.get("layoutno")) | for b in self.boxes: print(b["text"], b.get("layoutno")) | ||||
| print(tbls) | print(tbls) | ||||
| pdf_parser = Pdf() | pdf_parser = Pdf() | ||||
| paper = pdf_parser(filename if not binary else binary, | paper = pdf_parser(filename if not binary else binary, | ||||
| from_page=from_page, to_page=to_page, callback=callback) | from_page=from_page, to_page=to_page, callback=callback) | ||||
| else: raise NotImplementedError("file type not supported yet(pdf supported)") | |||||
| doc = { | doc = { | ||||
| "docnm_kwd": paper["title"] if paper["title"] else filename, | "docnm_kwd": paper["title"] if paper["title"] else filename, | ||||
| "authors_tks": paper["authors"] | "authors_tks": paper["authors"] |
| txt = self.__extract(shape) | txt = self.__extract(shape) | ||||
| if txt: texts.append(txt) | if txt: texts.append(txt) | ||||
| txts.append("\n".join(texts)) | txts.append("\n".join(texts)) | ||||
| callback__((i+1)/self.total_page/2, "", callback) | |||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page, | |||||
| "Page {}~{}: Text extraction finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.5, "Text extraction finished.", callback) | |||||
| import aspose.slides as slides | import aspose.slides as slides | ||||
| import aspose.pydrawing as drawing | import aspose.pydrawing as drawing | ||||
| imgs = [] | imgs = [] | ||||
| slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg) | slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg) | ||||
| imgs.append(buffered.getvalue()) | imgs.append(buffered.getvalue()) | ||||
| assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts)) | assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts)) | ||||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page, | |||||
| "Page {}~{}: Image extraction finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.9, "Image extraction finished", callback) | |||||
| self.is_english = is_english(txts) | self.is_english = is_english(txts) | ||||
| return [(txts[i], imgs[i]) for i in range(len(txts))] | return [(txts[i], imgs[i]) for i in range(len(txts))] | ||||
| def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None): | def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None): | ||||
| self.__images__(filename if not binary else binary, zoomin, from_page, to_page) | self.__images__(filename if not binary else binary, zoomin, from_page, to_page) | ||||
| callback__((min(to_page, self.total_page)-from_page) / self.total_page, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| callback__(0.8, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| assert len(self.boxes) == len(self.page_images), "{} vs. {}".format(len(self.boxes), len(self.page_images)) | assert len(self.boxes) == len(self.page_images), "{} vs. {}".format(len(self.boxes), len(self.page_images)) | ||||
| res = [] | res = [] | ||||
| #################### More precisely ################### | #################### More precisely ################### | ||||
| for i in range(len(self.boxes)): | for i in range(len(self.boxes)): | ||||
| lines = "\n".join([b["text"] for b in self.boxes[i] if not self.__garbage(b["text"])]) | lines = "\n".join([b["text"] for b in self.boxes[i] if not self.__garbage(b["text"])]) | ||||
| res.append((lines, self.page_images[i])) | res.append((lines, self.page_images[i])) | ||||
| callback__(0.9, "Page {}~{}: Parsing finished".format(from_page, min(to_page, self.total_page)), callback) | |||||
| return res | return res | ||||
| res = [] | res = [] | ||||
| if re.search(r"\.pptx?$", filename, re.IGNORECASE): | if re.search(r"\.pptx?$", filename, re.IGNORECASE): | ||||
| ppt_parser = Ppt() | ppt_parser = Ppt() | ||||
| for txt,img in ppt_parser(filename if not binary else binary, from_page, to_page, callback): | |||||
| for txt,img in ppt_parser(filename if not binary else binary, from_page, 1000000, callback): | |||||
| d = copy.deepcopy(doc) | d = copy.deepcopy(doc) | ||||
| d["image"] = img | d["image"] = img | ||||
| tokenize(d, txt, ppt_parser.is_english) | tokenize(d, txt, ppt_parser.is_english) | ||||
| res.append(d) | res.append(d) | ||||
| return res | return res | ||||
| if re.search(r"\.pdf$", filename, re.IGNORECASE): | |||||
| elif re.search(r"\.pdf$", filename, re.IGNORECASE): | |||||
| pdf_parser = Pdf() | pdf_parser = Pdf() | ||||
| for txt,img in pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback): | for txt,img in pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback): | ||||
| d = copy.deepcopy(doc) | d = copy.deepcopy(doc) | ||||
| tokenize(d, txt, pdf_parser.is_english) | tokenize(d, txt, pdf_parser.is_english) | ||||
| res.append(d) | res.append(d) | ||||
| return res | return res | ||||
| callback__(-1, "This kind of presentation document did not support yet!", callback) | |||||
| raise NotImplementedError("file type not supported yet(pptx, pdf supported)") | |||||
| if __name__== "__main__": | if __name__== "__main__": |
| return "\n\n".join(res) | return "\n\n".join(res) | ||||
| @staticmethod | |||||
| def total_page_number(fnm, binary=None): | |||||
| try: | |||||
| pdf = pdfplumber.open(fnm) if not binary else pdfplumber.open(BytesIO(binary)) | |||||
| return len(pdf.pages) | |||||
| except Exception as e: | |||||
| pdf = fitz.open(fnm) if not binary else fitz.open(stream=fnm, filetype="pdf") | |||||
| return len(pdf) | |||||
| def __images__(self, fnm, zoomin=3, page_from=0, page_to=299): | def __images__(self, fnm, zoomin=3, page_from=0, page_to=299): | ||||
| self.lefted_chars = [] | self.lefted_chars = [] | ||||
| self.mean_height = [] | self.mean_height = [] |
| # | |||||
| # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # | |||||
| import logging | |||||
| import os | |||||
| import time | |||||
| import random | |||||
| from timeit import default_timer as timer | |||||
| from api.db.db_models import Task | |||||
| from api.db.db_utils import bulk_insert_into_db | |||||
| from api.db.services.task_service import TaskService | |||||
| from rag.parser.pdf_parser import HuParser | |||||
| from rag.settings import cron_logger | |||||
| from rag.utils import MINIO | |||||
| from rag.utils import findMaxTm | |||||
| import pandas as pd | |||||
| from api.db import FileType | |||||
| from api.db.services.document_service import DocumentService | |||||
| from api.settings import database_logger | |||||
| from api.utils import get_format_time, get_uuid | |||||
| from api.utils.file_utils import get_project_base_directory | |||||
| def collect(tm): | |||||
| docs = DocumentService.get_newly_uploaded(tm) | |||||
| if len(docs) == 0: | |||||
| return pd.DataFrame() | |||||
| docs = pd.DataFrame(docs) | |||||
| mtm = docs["update_time"].max() | |||||
| cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm)) | |||||
| return docs | |||||
| def set_dispatching(docid): | |||||
| try: | |||||
| DocumentService.update_by_id( | |||||
| docid, {"progress": random.randint(0, 3) / 100., | |||||
| "progress_msg": "Task dispatched...", | |||||
| "process_begin_at": get_format_time() | |||||
| }) | |||||
| except Exception as e: | |||||
| cron_logger.error("set_dispatching:({}), {}".format(docid, str(e))) | |||||
| def dispatch(): | |||||
| tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"broker.tm") | |||||
| tm = findMaxTm(tm_fnm) | |||||
| rows = collect(tm) | |||||
| if len(rows) == 0: | |||||
| return | |||||
| tmf = open(tm_fnm, "a+") | |||||
| for _, r in rows.iterrows(): | |||||
| try: | |||||
| tsks = TaskService.query(doc_id=r["id"]) | |||||
| if tsks: | |||||
| for t in tsks: | |||||
| TaskService.delete_by_id(t.id) | |||||
| except Exception as e: | |||||
| cron_logger.error("delete task exception:" + str(e)) | |||||
| def new_task(): | |||||
| nonlocal r | |||||
| return { | |||||
| "id": get_uuid(), | |||||
| "doc_id": r["id"] | |||||
| } | |||||
| tsks = [] | |||||
| if r["type"] == FileType.PDF.value: | |||||
| pages = HuParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"])) | |||||
| for p in range(0, pages, 10): | |||||
| task = new_task() | |||||
| task["from_page"] = p | |||||
| task["to_page"] = min(p + 10, pages) | |||||
| tsks.append(task) | |||||
| else: | |||||
| tsks.append(new_task()) | |||||
| print(tsks) | |||||
| bulk_insert_into_db(Task, tsks, True) | |||||
| set_dispatching(r["id"]) | |||||
| tmf.write(str(r["update_time"]) + "\n") | |||||
| tmf.close() | |||||
| def update_progress(): | |||||
| docs = DocumentService.get_unfinished_docs() | |||||
| for d in docs: | |||||
| try: | |||||
| tsks = TaskService.query(doc_id=d["id"], order_by=Task.create_time) | |||||
| if not tsks:continue | |||||
| msg = [] | |||||
| prg = 0 | |||||
| finished = True | |||||
| bad = 0 | |||||
| for t in tsks: | |||||
| if 0 <= t.progress < 1: finished = False | |||||
| prg += t.progress if t.progress >= 0 else 0 | |||||
| msg.append(t.progress_msg) | |||||
| if t.progress == -1: bad += 1 | |||||
| prg /= len(tsks) | |||||
| if finished and bad: prg = -1 | |||||
| msg = "\n".join(msg) | |||||
| DocumentService.update_by_id(d["id"], {"progress": prg, "progress_msg": msg, "process_duation": timer()-d["process_begin_at"].timestamp()}) | |||||
| except Exception as e: | |||||
| cron_logger.error("fetch task exception:" + str(e)) | |||||
| if __name__ == "__main__": | |||||
| peewee_logger = logging.getLogger('peewee') | |||||
| peewee_logger.propagate = False | |||||
| peewee_logger.addHandler(database_logger.handlers[0]) | |||||
| peewee_logger.setLevel(database_logger.level) | |||||
| while True: | |||||
| dispatch() | |||||
| time.sleep(3) | |||||
| update_progress() |
| import os | import os | ||||
| import hashlib | import hashlib | ||||
| import copy | import copy | ||||
| import time | |||||
| import random | |||||
| import re | import re | ||||
| import sys | |||||
| from functools import partial | |||||
| from timeit import default_timer as timer | from timeit import default_timer as timer | ||||
| from api.db.services.task_service import TaskService | |||||
| from rag.llm import EmbeddingModel, CvModel | from rag.llm import EmbeddingModel, CvModel | ||||
| from rag.settings import cron_logger, DOC_MAXIMUM_SIZE | from rag.settings import cron_logger, DOC_MAXIMUM_SIZE | ||||
| from rag.utils import ELASTICSEARCH | from rag.utils import ELASTICSEARCH | ||||
| from rag.utils import MINIO | from rag.utils import MINIO | ||||
| from rag.utils import rmSpace, findMaxTm | from rag.utils import rmSpace, findMaxTm | ||||
| from rag.nlp import huchunk, huqie, search | |||||
| from rag.nlp import search | |||||
| from io import BytesIO | from io import BytesIO | ||||
| import pandas as pd | import pandas as pd | ||||
| from elasticsearch_dsl import Q | |||||
| from PIL import Image | |||||
| from rag.parser import ( | |||||
| PdfParser, | |||||
| DocxParser, | |||||
| ExcelParser | |||||
| ) | |||||
| from rag.nlp.huchunk import ( | |||||
| PdfChunker, | |||||
| DocxChunker, | |||||
| ExcelChunker, | |||||
| PptChunker, | |||||
| TextChunker | |||||
| ) | |||||
| from api.db import LLMType | |||||
| from rag.app import laws, paper, presentation, manual | |||||
| from api.db import LLMType, ParserType | |||||
| from api.db.services.document_service import DocumentService | from api.db.services.document_service import DocumentService | ||||
| from api.db.services.llm_service import TenantLLMService, LLMBundle | |||||
| from api.db.services.llm_service import LLMBundle | |||||
| from api.settings import database_logger | from api.settings import database_logger | ||||
| from api.utils import get_format_time | |||||
| from api.utils.file_utils import get_project_base_directory | from api.utils.file_utils import get_project_base_directory | ||||
| BATCH_SIZE = 64 | BATCH_SIZE = 64 | ||||
| PDF = PdfChunker(PdfParser()) | |||||
| DOC = DocxChunker(DocxParser()) | |||||
| EXC = ExcelChunker(ExcelParser()) | |||||
| PPT = PptChunker() | |||||
| FACTORY = { | |||||
| ParserType.GENERAL.value: laws, | |||||
| ParserType.PAPER.value: paper, | |||||
| ParserType.PRESENTATION.value: presentation, | |||||
| ParserType.MANUAL.value: manual, | |||||
| ParserType.LAWS.value: laws, | |||||
| } | |||||
| def set_progress(task_id, from_page, to_page, prog=None, msg="Processing..."): | |||||
| cancel = TaskService.do_cancel(task_id) | |||||
| if cancel: | |||||
| msg = "Canceled." | |||||
| prog = -1 | |||||
| if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg | |||||
| d = {"progress_msg": msg} | |||||
| if prog is not None: d["progress"] = prog | |||||
| try: | |||||
| TaskService.update_by_id(task_id, d) | |||||
| except Exception as e: | |||||
| cron_logger.error("set_progress:({}), {}".format(task_id, str(e))) | |||||
| if cancel:sys.exit() | |||||
| """ | |||||
| def chuck_doc(name, binary, tenant_id, cvmdl=None): | def chuck_doc(name, binary, tenant_id, cvmdl=None): | ||||
| suff = os.path.split(name)[-1].lower().split(".")[-1] | suff = os.path.split(name)[-1].lower().split(".")[-1] | ||||
| if suff.find("pdf") >= 0: | if suff.find("pdf") >= 0: | ||||
| return field | return field | ||||
| return TextChunker()(binary) | return TextChunker()(binary) | ||||
| """ | |||||
| def collect(comm, mod, tm): | def collect(comm, mod, tm): | ||||
| docs = DocumentService.get_newly_uploaded(tm, mod, comm) | |||||
| if len(docs) == 0: | |||||
| tasks = TaskService.get_tasks(tm, mod, comm) | |||||
| if len(tasks) == 0: | |||||
| return pd.DataFrame() | return pd.DataFrame() | ||||
| docs = pd.DataFrame(docs) | |||||
| mtm = docs["update_time"].max() | |||||
| cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm)) | |||||
| return docs | |||||
| def set_progress(docid, prog, msg="Processing...", begin=False): | |||||
| d = {"progress": prog, "progress_msg": msg} | |||||
| if begin: | |||||
| d["process_begin_at"] = get_format_time() | |||||
| try: | |||||
| DocumentService.update_by_id( | |||||
| docid, {"progress": prog, "progress_msg": msg}) | |||||
| except Exception as e: | |||||
| cron_logger.error("set_progress:({}), {}".format(docid, str(e))) | |||||
| tasks = pd.DataFrame(tasks) | |||||
| mtm = tasks["update_time"].max() | |||||
| cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm)) | |||||
| return tasks | |||||
| def build(row, cvmdl): | def build(row, cvmdl): | ||||
| (int(DOC_MAXIMUM_SIZE / 1024 / 1024))) | (int(DOC_MAXIMUM_SIZE / 1024 / 1024))) | ||||
| return [] | return [] | ||||
| # res = ELASTICSEARCH.search(Q("term", doc_id=row["id"])) | |||||
| # if ELASTICSEARCH.getTotal(res) > 0: | |||||
| # ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]), | |||||
| # scripts=""" | |||||
| # if(!ctx._source.kb_id.contains('%s')) | |||||
| # ctx._source.kb_id.add('%s'); | |||||
| # """ % (str(row["kb_id"]), str(row["kb_id"])), | |||||
| # idxnm=search.index_name(row["tenant_id"]) | |||||
| # ) | |||||
| # set_progress(row["id"], 1, "Done") | |||||
| # return [] | |||||
| random.seed(time.time()) | |||||
| set_progress(row["id"], random.randint(0, 20) / | |||||
| 100., "Finished preparing! Start to slice file!", True) | |||||
| callback = partial(set_progress, row["id"], row["from_page"], row["to_page"]) | |||||
| chunker = FACTORY[row["parser_id"]] | |||||
| try: | try: | ||||
| cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"])) | cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"])) | ||||
| obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), row["tenant_id"], cvmdl) | |||||
| cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"], | |||||
| callback) | |||||
| except Exception as e: | except Exception as e: | ||||
| if re.search("(No such file|not found)", str(e)): | if re.search("(No such file|not found)", str(e)): | ||||
| set_progress( | |||||
| row["id"], -1, "Can not find file <%s>" % | |||||
| row["doc_name"]) | |||||
| callback(-1, "Can not find file <%s>" % row["doc_name"]) | |||||
| else: | else: | ||||
| set_progress( | |||||
| row["id"], -1, f"Internal server error: %s" % | |||||
| str(e).replace( | |||||
| "'", "")) | |||||
| callback(-1, f"Internal server error: %s" % str(e).replace("'", "")) | |||||
| cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e))) | cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e))) | ||||
| return [] | return [] | ||||
| if not obj.text_chunks and not obj.table_chunks: | |||||
| set_progress( | |||||
| row["id"], | |||||
| 1, | |||||
| "Nothing added! Mostly, file type unsupported yet.") | |||||
| return [] | |||||
| set_progress(row["id"], random.randint(20, 60) / 100., | |||||
| "Finished slicing files. Start to embedding the content.") | |||||
| callback(msg="Finished slicing files. Start to embedding the content.") | |||||
| docs = [] | |||||
| doc = { | doc = { | ||||
| "doc_id": row["id"], | |||||
| "kb_id": [str(row["kb_id"])], | |||||
| "docnm_kwd": os.path.split(row["location"])[-1], | |||||
| "title_tks": huqie.qie(row["name"]) | |||||
| "doc_id": row["doc_id"], | |||||
| "kb_id": [str(row["kb_id"])] | |||||
| } | } | ||||
| doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"]) | |||||
| output_buffer = BytesIO() | |||||
| docs = [] | |||||
| for txt, img in obj.text_chunks: | |||||
| for ck in cks: | |||||
| d = copy.deepcopy(doc) | d = copy.deepcopy(doc) | ||||
| d.update(ck) | |||||
| md5 = hashlib.md5() | md5 = hashlib.md5() | ||||
| md5.update((txt + str(d["doc_id"])).encode("utf-8")) | |||||
| md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")) | |||||
| d["_id"] = md5.hexdigest() | d["_id"] = md5.hexdigest() | ||||
| d["content_ltks"] = huqie.qie(txt) | |||||
| d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) | |||||
| if not img: | |||||
| d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |||||
| if not d.get("image"): | |||||
| docs.append(d) | docs.append(d) | ||||
| continue | continue | ||||
| if isinstance(img, bytes): | |||||
| output_buffer = BytesIO(img) | |||||
| output_buffer = BytesIO() | |||||
| if isinstance(d["image"], bytes): | |||||
| output_buffer = BytesIO(d["image"]) | |||||
| else: | else: | ||||
| img.save(output_buffer, format='JPEG') | |||||
| d["image"].save(output_buffer, format='JPEG') | |||||
| MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) | MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) | ||||
| d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) | d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) | ||||
| d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |||||
| docs.append(d) | docs.append(d) | ||||
| for arr, img in obj.table_chunks: | |||||
| for i, txt in enumerate(arr): | |||||
| d = copy.deepcopy(doc) | |||||
| d["content_ltks"] = huqie.qie(txt) | |||||
| md5 = hashlib.md5() | |||||
| md5.update((txt + str(d["doc_id"])).encode("utf-8")) | |||||
| d["_id"] = md5.hexdigest() | |||||
| if not img: | |||||
| docs.append(d) | |||||
| continue | |||||
| img.save(output_buffer, format='JPEG') | |||||
| MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) | |||||
| d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) | |||||
| d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |||||
| docs.append(d) | |||||
| set_progress(row["id"], random.randint(60, 70) / | |||||
| 100., "Continue embedding the content.") | |||||
| return docs | return docs | ||||
| def embedding(docs, mdl): | def embedding(docs, mdl): | ||||
| tts, cnts = [rmSpace(d["title_tks"]) for d in docs], [rmSpace(d["content_ltks"]) for d in docs] | |||||
| tts, cnts = [d["docnm_kwd"] for d in docs], [d["content_with_weight"] for d in docs] | |||||
| tk_count = 0 | tk_count = 0 | ||||
| tts, c = mdl.encode(tts) | tts, c = mdl.encode(tts) | ||||
| tk_count += c | tk_count += c | ||||
| assert len(vects) == len(docs) | assert len(vects) == len(docs) | ||||
| for i, d in enumerate(docs): | for i, d in enumerate(docs): | ||||
| v = vects[i].tolist() | v = vects[i].tolist() | ||||
| d["q_%d_vec"%len(v)] = v | |||||
| d["q_%d_vec" % len(v)] = v | |||||
| return tk_count | return tk_count | ||||
| try: | try: | ||||
| embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING) | embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING) | ||||
| cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT) | cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT) | ||||
| #TODO: sequence2text model | |||||
| # TODO: sequence2text model | |||||
| except Exception as e: | except Exception as e: | ||||
| set_progress(r["id"], -1, str(e)) | set_progress(r["id"], -1, str(e)) | ||||
| continue | continue | ||||
| callback = partial(set_progress, r["id"], r["from_page"], r["to_page"]) | |||||
| st_tm = timer() | st_tm = timer() | ||||
| cks = build(r, cv_mdl) | cks = build(r, cv_mdl) | ||||
| if not cks: | if not cks: | ||||
| try: | try: | ||||
| tk_count = embedding(cks, embd_mdl) | tk_count = embedding(cks, embd_mdl) | ||||
| except Exception as e: | except Exception as e: | ||||
| set_progress(r["id"], -1, "Embedding error:{}".format(str(e))) | |||||
| callback(-1, "Embedding error:{}".format(str(e))) | |||||
| cron_logger.error(str(e)) | cron_logger.error(str(e)) | ||||
| continue | continue | ||||
| set_progress(r["id"], random.randint(70, 95) / 100., | |||||
| "Finished embedding! Start to build index!") | |||||
| callback(msg="Finished embedding! Start to build index!") | |||||
| init_kb(r) | init_kb(r) | ||||
| chunk_count = len(set([c["_id"] for c in cks])) | chunk_count = len(set([c["_id"] for c in cks])) | ||||
| callback(1., "Done!") | |||||
| es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"])) | es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"])) | ||||
| if es_r: | if es_r: | ||||
| set_progress(r["id"], -1, "Index failure!") | |||||
| callback(-1, "Index failure!") | |||||
| cron_logger.error(str(es_r)) | cron_logger.error(str(es_r)) | ||||
| else: | else: | ||||
| set_progress(r["id"], 1., "Done!") | |||||
| DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm) | |||||
| DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0) | |||||
| cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks))) | cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks))) | ||||
| tmf.write(str(r["update_time"]) + "\n") | tmf.write(str(r["update_time"]) + "\n") | ||||
| peewee_logger.setLevel(database_logger.level) | peewee_logger.setLevel(database_logger.level) | ||||
| from mpi4py import MPI | from mpi4py import MPI | ||||
| comm = MPI.COMM_WORLD | comm = MPI.COMM_WORLD | ||||
| main(comm.Get_size(), comm.Get_rank()) | main(comm.Get_size(), comm.Get_rank()) |