| @@ -22,6 +22,8 @@ from elasticsearch_dsl import Q | |||
| from flask import request | |||
| from flask_login import login_required, current_user | |||
| from api.db.db_models import Task | |||
| from api.db.services.task_service import TaskService | |||
| from rag.nlp import search | |||
| from rag.utils import ELASTICSEARCH | |||
| from api.db.services import duplicate_name | |||
| @@ -205,6 +207,26 @@ def rm(): | |||
| return server_error_response(e) | |||
| @manager.route('/run', methods=['POST']) | |||
| @login_required | |||
| @validate_request("doc_ids", "run") | |||
| def rm(): | |||
| req = request.json | |||
| try: | |||
| for id in req["doc_ids"]: | |||
| DocumentService.update_by_id(id, {"run": str(req["run"])}) | |||
| if req["run"] == "2": | |||
| TaskService.filter_delete([Task.doc_id == id]) | |||
| tenant_id = DocumentService.get_tenant_id(id) | |||
| if not tenant_id: | |||
| return get_data_error_result(retmsg="Tenant not found!") | |||
| ELASTICSEARCH.deleteByQuery(Q("match", doc_id=id), idxnm=search.index_name(tenant_id)) | |||
| return get_json_result(data=True) | |||
| except Exception as e: | |||
| return server_error_response(e) | |||
| @manager.route('/rename', methods=['POST']) | |||
| @login_required | |||
| @validate_request("doc_id", "name", "old_name") | |||
| @@ -262,7 +284,7 @@ def change_parser(): | |||
| if doc.parser_id.lower() == req["parser_id"].lower(): | |||
| return get_json_result(data=True) | |||
| e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": ""}) | |||
| e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": "", "run": 1}) | |||
| if not e: | |||
| return get_data_error_result(retmsg="Document not found!") | |||
| e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1) | |||
| @@ -59,3 +59,14 @@ class ChatStyle(StrEnum): | |||
| PRECISE = 'Precise' | |||
| EVENLY = 'Evenly' | |||
| CUSTOM = 'Custom' | |||
| class ParserType(StrEnum): | |||
| GENERAL = "general" | |||
| PRESENTATION = "presentation" | |||
| LAWS = "laws" | |||
| MANUAL = "manual" | |||
| PAPER = "paper" | |||
| RESUME = "" | |||
| BOOK = "" | |||
| QA = "" | |||
| @@ -496,15 +496,27 @@ class Document(DataBaseModel): | |||
| token_num = IntegerField(default=0) | |||
| chunk_num = IntegerField(default=0) | |||
| progress = FloatField(default=0) | |||
| progress_msg = CharField(max_length=255, null=True, help_text="process message", default="") | |||
| progress_msg = CharField(max_length=512, null=True, help_text="process message", default="") | |||
| process_begin_at = DateTimeField(null=True) | |||
| process_duation = FloatField(default=0) | |||
| run = CharField(max_length=1, null=True, help_text="start to run processing or cancel.(1: run it; 2: cancel)", default="0") | |||
| status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1") | |||
| class Meta: | |||
| db_table = "document" | |||
| class Task(DataBaseModel): | |||
| id = CharField(max_length=32, primary_key=True) | |||
| doc_id = CharField(max_length=32, null=False, index=True) | |||
| from_page = IntegerField(default=0) | |||
| to_page = IntegerField(default=-1) | |||
| begin_at = DateTimeField(null=True) | |||
| process_duation = FloatField(default=0) | |||
| progress = FloatField(default=0) | |||
| progress_msg = CharField(max_length=255, null=True, help_text="process message", default="") | |||
| class Dialog(DataBaseModel): | |||
| id = CharField(max_length=32, primary_key=True) | |||
| tenant_id = CharField(max_length=32, null=False) | |||
| @@ -553,72 +565,6 @@ class Conversation(DataBaseModel): | |||
| """ | |||
| class Job(DataBaseModel): | |||
| # multi-party common configuration | |||
| f_user_id = CharField(max_length=25, null=True) | |||
| f_job_id = CharField(max_length=25, index=True) | |||
| f_name = CharField(max_length=500, null=True, default='') | |||
| f_description = TextField(null=True, default='') | |||
| f_tag = CharField(max_length=50, null=True, default='') | |||
| f_dsl = JSONField() | |||
| f_runtime_conf = JSONField() | |||
| f_runtime_conf_on_party = JSONField() | |||
| f_train_runtime_conf = JSONField(null=True) | |||
| f_roles = JSONField() | |||
| f_initiator_role = CharField(max_length=50) | |||
| f_initiator_party_id = CharField(max_length=50) | |||
| f_status = CharField(max_length=50) | |||
| f_status_code = IntegerField(null=True) | |||
| f_user = JSONField() | |||
| # this party configuration | |||
| f_role = CharField(max_length=50, index=True) | |||
| f_party_id = CharField(max_length=10, index=True) | |||
| f_is_initiator = BooleanField(null=True, default=False) | |||
| f_progress = IntegerField(null=True, default=0) | |||
| f_ready_signal = BooleanField(default=False) | |||
| f_ready_time = BigIntegerField(null=True) | |||
| f_cancel_signal = BooleanField(default=False) | |||
| f_cancel_time = BigIntegerField(null=True) | |||
| f_rerun_signal = BooleanField(default=False) | |||
| f_end_scheduling_updates = IntegerField(null=True, default=0) | |||
| f_engine_name = CharField(max_length=50, null=True) | |||
| f_engine_type = CharField(max_length=10, null=True) | |||
| f_cores = IntegerField(default=0) | |||
| f_memory = IntegerField(default=0) # MB | |||
| f_remaining_cores = IntegerField(default=0) | |||
| f_remaining_memory = IntegerField(default=0) # MB | |||
| f_resource_in_use = BooleanField(default=False) | |||
| f_apply_resource_time = BigIntegerField(null=True) | |||
| f_return_resource_time = BigIntegerField(null=True) | |||
| f_inheritance_info = JSONField(null=True) | |||
| f_inheritance_status = CharField(max_length=50, null=True) | |||
| f_start_time = BigIntegerField(null=True) | |||
| f_start_date = DateTimeField(null=True) | |||
| f_end_time = BigIntegerField(null=True) | |||
| f_end_date = DateTimeField(null=True) | |||
| f_elapsed = BigIntegerField(null=True) | |||
| class Meta: | |||
| db_table = "t_job" | |||
| primary_key = CompositeKey('f_job_id', 'f_role', 'f_party_id') | |||
| class PipelineComponentMeta(DataBaseModel): | |||
| f_model_id = CharField(max_length=100, index=True) | |||
| f_model_version = CharField(max_length=100, index=True) | |||
| f_role = CharField(max_length=50, index=True) | |||
| f_party_id = CharField(max_length=10, index=True) | |||
| f_component_name = CharField(max_length=100, index=True) | |||
| f_component_module_name = CharField(max_length=100) | |||
| f_model_alias = CharField(max_length=100, index=True) | |||
| f_model_proto_index = JSONField(null=True) | |||
| f_run_parameters = JSONField(null=True) | |||
| f_archive_sha256 = CharField(max_length=100, null=True) | |||
| f_archive_from_ip = CharField(max_length=100, null=True) | |||
| class Meta: | |||
| db_table = 't_pipeline_component_meta' | |||
| @@ -32,19 +32,19 @@ LOGGER = getLogger() | |||
| def bulk_insert_into_db(model, data_source, replace_on_conflict=False): | |||
| DB.create_tables([model]) | |||
| current_time = current_timestamp() | |||
| current_date = timestamp_to_date(current_time) | |||
| for data in data_source: | |||
| if 'f_create_time' not in data: | |||
| data['f_create_time'] = current_time | |||
| data['f_create_date'] = timestamp_to_date(data['f_create_time']) | |||
| data['f_update_time'] = current_time | |||
| data['f_update_date'] = current_date | |||
| current_time = current_timestamp() | |||
| current_date = timestamp_to_date(current_time) | |||
| if 'create_time' not in data: | |||
| data['create_time'] = current_time | |||
| data['create_date'] = timestamp_to_date(data['create_time']) | |||
| data['update_time'] = current_time | |||
| data['update_date'] = current_date | |||
| preserve = tuple(data_source[0].keys() - {'f_create_time', 'f_create_date'}) | |||
| preserve = tuple(data_source[0].keys() - {'create_time', 'create_date'}) | |||
| batch_size = 50 if RuntimeConfig.USE_LOCAL_DATABASE else 1000 | |||
| batch_size = 1000 | |||
| for i in range(0, len(data_source), batch_size): | |||
| with DB.atomic(): | |||
| @@ -70,6 +70,7 @@ class CommonService: | |||
| @DB.connection_context() | |||
| def insert_many(cls, data_list, batch_size=100): | |||
| with DB.atomic(): | |||
| for d in data_list: d["create_time"] = datetime_format(datetime.now()) | |||
| for i in range(0, len(data_list), batch_size): | |||
| cls.model.insert_many(data_list[i:i + batch_size]).execute() | |||
| @@ -61,8 +61,8 @@ class DocumentService(CommonService): | |||
| @classmethod | |||
| @DB.connection_context() | |||
| def get_newly_uploaded(cls, tm, mod, comm, items_per_page=64): | |||
| fields = [cls.model.id, cls.model.kb_id, cls.model.parser_id, cls.model.name, cls.model.location, cls.model.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, cls.model.update_time] | |||
| def get_newly_uploaded(cls, tm, mod=0, comm=1, items_per_page=64): | |||
| fields = [cls.model.id, cls.model.kb_id, cls.model.parser_id, cls.model.name, cls.model.type, cls.model.location, cls.model.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, Tenant.asr_id, cls.model.update_time] | |||
| docs = cls.model.select(*fields) \ | |||
| .join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \ | |||
| .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\ | |||
| @@ -76,6 +76,18 @@ class DocumentService(CommonService): | |||
| .paginate(1, items_per_page) | |||
| return list(docs.dicts()) | |||
| @classmethod | |||
| @DB.connection_context() | |||
| def get_unfinished_docs(cls): | |||
| fields = [cls.model.id, cls.model.process_begin_at] | |||
| docs = cls.model.select(*fields) \ | |||
| .where( | |||
| cls.model.status == StatusEnum.VALID.value, | |||
| ~(cls.model.type == FileType.VIRTUAL.value), | |||
| cls.model.progress < 1, | |||
| cls.model.progress > 0) | |||
| return list(docs.dicts()) | |||
| @classmethod | |||
| @DB.connection_context() | |||
| def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation): | |||
| @@ -0,0 +1,53 @@ | |||
| # | |||
| # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # | |||
| from peewee import Expression | |||
| from api.db.db_models import DB | |||
| from api.db import StatusEnum, FileType | |||
| from api.db.db_models import Task, Document, Knowledgebase, Tenant | |||
| from api.db.services.common_service import CommonService | |||
| class TaskService(CommonService): | |||
| model = Task | |||
| @classmethod | |||
| @DB.connection_context() | |||
| def get_tasks(cls, tm, mod=0, comm=1, items_per_page=64): | |||
| fields = [cls.model.id, cls.model.doc_id, cls.model.from_page,cls.model.to_page, Document.kb_id, Document.parser_id, Document.name, Document.type, Document.location, Document.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, Tenant.asr_id, cls.model.update_time] | |||
| docs = cls.model.select(*fields) \ | |||
| .join(Document, on=(cls.model.doc_id == Document.id)) \ | |||
| .join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id)) \ | |||
| .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\ | |||
| .where( | |||
| Document.status == StatusEnum.VALID.value, | |||
| ~(Document.type == FileType.VIRTUAL.value), | |||
| cls.model.progress == 0, | |||
| cls.model.update_time >= tm, | |||
| (Expression(cls.model.create_time, "%%", comm) == mod))\ | |||
| .order_by(cls.model.update_time.asc())\ | |||
| .paginate(1, items_per_page) | |||
| return list(docs.dicts()) | |||
| @classmethod | |||
| @DB.connection_context() | |||
| def do_cancel(cls, id): | |||
| try: | |||
| cls.model.get_by_id(id) | |||
| return False | |||
| except Exception as e: | |||
| pass | |||
| return True | |||
| @@ -67,4 +67,6 @@ def tokenize(d, t, eng): | |||
| d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)]) | |||
| else: | |||
| d["content_ltks"] = huqie.qie(t) | |||
| d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) | |||
| d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) | |||
| @@ -32,14 +32,12 @@ class Pdf(HuParser): | |||
| zoomin, | |||
| from_page, | |||
| to_page) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, | |||
| "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.1, "OCR finished", callback) | |||
| from timeit import default_timer as timer | |||
| start = timer() | |||
| self._layouts_paddle(zoomin) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, | |||
| "Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.77, "Layout analysis finished", callback) | |||
| print("paddle layouts:", timer()-start) | |||
| bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3) | |||
| # is it English | |||
| @@ -77,8 +75,7 @@ class Pdf(HuParser): | |||
| b["x1"] = max(b["x1"], b_["x1"]) | |||
| bxs.pop(i + 1) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 2, | |||
| "Page {}~{}: Text extraction finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.8, "Text extraction finished", callback) | |||
| return [b["text"] + self._line_tag(b, zoomin) for b in bxs] | |||
| @@ -92,14 +89,17 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||
| pdf_parser = None | |||
| sections = [] | |||
| if re.search(r"\.docx?$", filename, re.IGNORECASE): | |||
| callback__(0.1, "Start to parse.", callback) | |||
| for txt in Docx()(filename, binary): | |||
| sections.append(txt) | |||
| if re.search(r"\.pdf$", filename, re.IGNORECASE): | |||
| callback__(0.8, "Finish parsing.", callback) | |||
| elif re.search(r"\.pdf$", filename, re.IGNORECASE): | |||
| pdf_parser = Pdf() | |||
| for txt in pdf_parser(filename if not binary else binary, | |||
| from_page=from_page, to_page=to_page, callback=callback): | |||
| sections.append(txt) | |||
| if re.search(r"\.txt$", filename, re.IGNORECASE): | |||
| elif re.search(r"\.txt$", filename, re.IGNORECASE): | |||
| callback__(0.1, "Start to parse.", callback) | |||
| txt = "" | |||
| if binary:txt = binary.decode("utf-8") | |||
| else: | |||
| @@ -110,6 +110,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||
| txt += l | |||
| sections = txt.split("\n") | |||
| sections = [l for l in sections if l] | |||
| callback__(0.8, "Finish parsing.", callback) | |||
| else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)") | |||
| # is it English | |||
| eng = is_english(sections) | |||
| @@ -1,12 +1,8 @@ | |||
| import copy | |||
| import re | |||
| from collections import Counter | |||
| from rag.app import callback__, bullets_category, BULLET_PATTERN, is_english, tokenize | |||
| from rag.nlp import huqie, stemmer | |||
| from rag.parser.docx_parser import HuDocxParser | |||
| from rag.app import callback__, tokenize | |||
| from rag.nlp import huqie | |||
| from rag.parser.pdf_parser import HuParser | |||
| from nltk.tokenize import word_tokenize | |||
| import numpy as np | |||
| from rag.utils import num_tokens_from_string | |||
| @@ -18,24 +14,19 @@ class Pdf(HuParser): | |||
| zoomin, | |||
| from_page, | |||
| to_page) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||
| "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.2, "OCR finished.", callback) | |||
| from timeit import default_timer as timer | |||
| start = timer() | |||
| self._layouts_paddle(zoomin) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||
| "Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.5, "Layout analysis finished.", callback) | |||
| print("paddle layouts:", timer() - start) | |||
| self._table_transformer_job(zoomin) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||
| "Page {}~{}: Table analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.7, "Table analysis finished.", callback) | |||
| self._text_merge() | |||
| column_width = np.median([b["x1"] - b["x0"] for b in self.boxes]) | |||
| self._concat_downward(concat_between_pages=False) | |||
| self._filter_forpages() | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||
| "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.77, "Text merging finished", callback) | |||
| tbls = self._extract_table_figure(True, zoomin, False) | |||
| # clean mess | |||
| @@ -71,6 +62,7 @@ class Pdf(HuParser): | |||
| b_["top"] = b["top"] | |||
| self.boxes.pop(i) | |||
| callback__(0.8, "Parsing finished", callback) | |||
| for b in self.boxes: print(b["text"], b.get("layoutno")) | |||
| print(tbls) | |||
| @@ -85,6 +77,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||
| pdf_parser = Pdf() | |||
| cks, tbls = pdf_parser(filename if not binary else binary, | |||
| from_page=from_page, to_page=to_page, callback=callback) | |||
| else: raise NotImplementedError("file type not supported yet(pdf supported)") | |||
| doc = { | |||
| "docnm_kwd": filename | |||
| } | |||
| @@ -18,24 +18,20 @@ class Pdf(HuParser): | |||
| zoomin, | |||
| from_page, | |||
| to_page) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||
| "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.2, "OCR finished.", callback) | |||
| from timeit import default_timer as timer | |||
| start = timer() | |||
| self._layouts_paddle(zoomin) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||
| "Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.47, "Layout analysis finished", callback) | |||
| print("paddle layouts:", timer() - start) | |||
| self._table_transformer_job(zoomin) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||
| "Page {}~{}: Table analysis finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.68, "Table analysis finished", callback) | |||
| self._text_merge() | |||
| column_width = np.median([b["x1"] - b["x0"] for b in self.boxes]) | |||
| self._concat_downward(concat_between_pages=False) | |||
| self._filter_forpages() | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4, | |||
| "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.75, "Text merging finished.", callback) | |||
| tbls = self._extract_table_figure(True, zoomin, False) | |||
| # clean mess | |||
| @@ -105,6 +101,7 @@ class Pdf(HuParser): | |||
| break | |||
| if not abstr: i = 0 | |||
| callback__(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| for b in self.boxes: print(b["text"], b.get("layoutno")) | |||
| print(tbls) | |||
| @@ -126,6 +123,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||
| pdf_parser = Pdf() | |||
| paper = pdf_parser(filename if not binary else binary, | |||
| from_page=from_page, to_page=to_page, callback=callback) | |||
| else: raise NotImplementedError("file type not supported yet(pdf supported)") | |||
| doc = { | |||
| "docnm_kwd": paper["title"] if paper["title"] else filename, | |||
| "authors_tks": paper["authors"] | |||
| @@ -42,10 +42,8 @@ class Ppt(object): | |||
| txt = self.__extract(shape) | |||
| if txt: texts.append(txt) | |||
| txts.append("\n".join(texts)) | |||
| callback__((i+1)/self.total_page/2, "", callback) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page, | |||
| "Page {}~{}: Text extraction finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.5, "Text extraction finished.", callback) | |||
| import aspose.slides as slides | |||
| import aspose.pydrawing as drawing | |||
| imgs = [] | |||
| @@ -55,8 +53,7 @@ class Ppt(object): | |||
| slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg) | |||
| imgs.append(buffered.getvalue()) | |||
| assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts)) | |||
| callback__((min(to_page, self.total_page) - from_page) / self.total_page, | |||
| "Page {}~{}: Image extraction finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.9, "Image extraction finished", callback) | |||
| self.is_english = is_english(txts) | |||
| return [(txts[i], imgs[i]) for i in range(len(txts))] | |||
| @@ -73,7 +70,7 @@ class Pdf(HuParser): | |||
| def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None): | |||
| self.__images__(filename if not binary else binary, zoomin, from_page, to_page) | |||
| callback__((min(to_page, self.total_page)-from_page) / self.total_page, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| callback__(0.8, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| assert len(self.boxes) == len(self.page_images), "{} vs. {}".format(len(self.boxes), len(self.page_images)) | |||
| res = [] | |||
| #################### More precisely ################### | |||
| @@ -92,6 +89,7 @@ class Pdf(HuParser): | |||
| for i in range(len(self.boxes)): | |||
| lines = "\n".join([b["text"] for b in self.boxes[i] if not self.__garbage(b["text"])]) | |||
| res.append((lines, self.page_images[i])) | |||
| callback__(0.9, "Page {}~{}: Parsing finished".format(from_page, min(to_page, self.total_page)), callback) | |||
| return res | |||
| @@ -104,13 +102,13 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||
| res = [] | |||
| if re.search(r"\.pptx?$", filename, re.IGNORECASE): | |||
| ppt_parser = Ppt() | |||
| for txt,img in ppt_parser(filename if not binary else binary, from_page, to_page, callback): | |||
| for txt,img in ppt_parser(filename if not binary else binary, from_page, 1000000, callback): | |||
| d = copy.deepcopy(doc) | |||
| d["image"] = img | |||
| tokenize(d, txt, ppt_parser.is_english) | |||
| res.append(d) | |||
| return res | |||
| if re.search(r"\.pdf$", filename, re.IGNORECASE): | |||
| elif re.search(r"\.pdf$", filename, re.IGNORECASE): | |||
| pdf_parser = Pdf() | |||
| for txt,img in pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback): | |||
| d = copy.deepcopy(doc) | |||
| @@ -118,7 +116,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||
| tokenize(d, txt, pdf_parser.is_english) | |||
| res.append(d) | |||
| return res | |||
| callback__(-1, "This kind of presentation document did not support yet!", callback) | |||
| raise NotImplementedError("file type not supported yet(pptx, pdf supported)") | |||
| if __name__== "__main__": | |||
| @@ -1559,6 +1559,15 @@ class HuParser: | |||
| return "\n\n".join(res) | |||
| @staticmethod | |||
| def total_page_number(fnm, binary=None): | |||
| try: | |||
| pdf = pdfplumber.open(fnm) if not binary else pdfplumber.open(BytesIO(binary)) | |||
| return len(pdf.pages) | |||
| except Exception as e: | |||
| pdf = fitz.open(fnm) if not binary else fitz.open(stream=fnm, filetype="pdf") | |||
| return len(pdf) | |||
| def __images__(self, fnm, zoomin=3, page_from=0, page_to=299): | |||
| self.lefted_chars = [] | |||
| self.mean_height = [] | |||
| @@ -0,0 +1,130 @@ | |||
| # | |||
| # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # | |||
| import logging | |||
| import os | |||
| import time | |||
| import random | |||
| from timeit import default_timer as timer | |||
| from api.db.db_models import Task | |||
| from api.db.db_utils import bulk_insert_into_db | |||
| from api.db.services.task_service import TaskService | |||
| from rag.parser.pdf_parser import HuParser | |||
| from rag.settings import cron_logger | |||
| from rag.utils import MINIO | |||
| from rag.utils import findMaxTm | |||
| import pandas as pd | |||
| from api.db import FileType | |||
| from api.db.services.document_service import DocumentService | |||
| from api.settings import database_logger | |||
| from api.utils import get_format_time, get_uuid | |||
| from api.utils.file_utils import get_project_base_directory | |||
| def collect(tm): | |||
| docs = DocumentService.get_newly_uploaded(tm) | |||
| if len(docs) == 0: | |||
| return pd.DataFrame() | |||
| docs = pd.DataFrame(docs) | |||
| mtm = docs["update_time"].max() | |||
| cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm)) | |||
| return docs | |||
| def set_dispatching(docid): | |||
| try: | |||
| DocumentService.update_by_id( | |||
| docid, {"progress": random.randint(0, 3) / 100., | |||
| "progress_msg": "Task dispatched...", | |||
| "process_begin_at": get_format_time() | |||
| }) | |||
| except Exception as e: | |||
| cron_logger.error("set_dispatching:({}), {}".format(docid, str(e))) | |||
| def dispatch(): | |||
| tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"broker.tm") | |||
| tm = findMaxTm(tm_fnm) | |||
| rows = collect(tm) | |||
| if len(rows) == 0: | |||
| return | |||
| tmf = open(tm_fnm, "a+") | |||
| for _, r in rows.iterrows(): | |||
| try: | |||
| tsks = TaskService.query(doc_id=r["id"]) | |||
| if tsks: | |||
| for t in tsks: | |||
| TaskService.delete_by_id(t.id) | |||
| except Exception as e: | |||
| cron_logger.error("delete task exception:" + str(e)) | |||
| def new_task(): | |||
| nonlocal r | |||
| return { | |||
| "id": get_uuid(), | |||
| "doc_id": r["id"] | |||
| } | |||
| tsks = [] | |||
| if r["type"] == FileType.PDF.value: | |||
| pages = HuParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"])) | |||
| for p in range(0, pages, 10): | |||
| task = new_task() | |||
| task["from_page"] = p | |||
| task["to_page"] = min(p + 10, pages) | |||
| tsks.append(task) | |||
| else: | |||
| tsks.append(new_task()) | |||
| print(tsks) | |||
| bulk_insert_into_db(Task, tsks, True) | |||
| set_dispatching(r["id"]) | |||
| tmf.write(str(r["update_time"]) + "\n") | |||
| tmf.close() | |||
| def update_progress(): | |||
| docs = DocumentService.get_unfinished_docs() | |||
| for d in docs: | |||
| try: | |||
| tsks = TaskService.query(doc_id=d["id"], order_by=Task.create_time) | |||
| if not tsks:continue | |||
| msg = [] | |||
| prg = 0 | |||
| finished = True | |||
| bad = 0 | |||
| for t in tsks: | |||
| if 0 <= t.progress < 1: finished = False | |||
| prg += t.progress if t.progress >= 0 else 0 | |||
| msg.append(t.progress_msg) | |||
| if t.progress == -1: bad += 1 | |||
| prg /= len(tsks) | |||
| if finished and bad: prg = -1 | |||
| msg = "\n".join(msg) | |||
| DocumentService.update_by_id(d["id"], {"progress": prg, "progress_msg": msg, "process_duation": timer()-d["process_begin_at"].timestamp()}) | |||
| except Exception as e: | |||
| cron_logger.error("fetch task exception:" + str(e)) | |||
| if __name__ == "__main__": | |||
| peewee_logger = logging.getLogger('peewee') | |||
| peewee_logger.propagate = False | |||
| peewee_logger.addHandler(database_logger.handlers[0]) | |||
| peewee_logger.setLevel(database_logger.level) | |||
| while True: | |||
| dispatch() | |||
| time.sleep(3) | |||
| update_progress() | |||
| @@ -19,49 +19,59 @@ import logging | |||
| import os | |||
| import hashlib | |||
| import copy | |||
| import time | |||
| import random | |||
| import re | |||
| import sys | |||
| from functools import partial | |||
| from timeit import default_timer as timer | |||
| from api.db.services.task_service import TaskService | |||
| from rag.llm import EmbeddingModel, CvModel | |||
| from rag.settings import cron_logger, DOC_MAXIMUM_SIZE | |||
| from rag.utils import ELASTICSEARCH | |||
| from rag.utils import MINIO | |||
| from rag.utils import rmSpace, findMaxTm | |||
| from rag.nlp import huchunk, huqie, search | |||
| from rag.nlp import search | |||
| from io import BytesIO | |||
| import pandas as pd | |||
| from elasticsearch_dsl import Q | |||
| from PIL import Image | |||
| from rag.parser import ( | |||
| PdfParser, | |||
| DocxParser, | |||
| ExcelParser | |||
| ) | |||
| from rag.nlp.huchunk import ( | |||
| PdfChunker, | |||
| DocxChunker, | |||
| ExcelChunker, | |||
| PptChunker, | |||
| TextChunker | |||
| ) | |||
| from api.db import LLMType | |||
| from rag.app import laws, paper, presentation, manual | |||
| from api.db import LLMType, ParserType | |||
| from api.db.services.document_service import DocumentService | |||
| from api.db.services.llm_service import TenantLLMService, LLMBundle | |||
| from api.db.services.llm_service import LLMBundle | |||
| from api.settings import database_logger | |||
| from api.utils import get_format_time | |||
| from api.utils.file_utils import get_project_base_directory | |||
| BATCH_SIZE = 64 | |||
| PDF = PdfChunker(PdfParser()) | |||
| DOC = DocxChunker(DocxParser()) | |||
| EXC = ExcelChunker(ExcelParser()) | |||
| PPT = PptChunker() | |||
| FACTORY = { | |||
| ParserType.GENERAL.value: laws, | |||
| ParserType.PAPER.value: paper, | |||
| ParserType.PRESENTATION.value: presentation, | |||
| ParserType.MANUAL.value: manual, | |||
| ParserType.LAWS.value: laws, | |||
| } | |||
| def set_progress(task_id, from_page, to_page, prog=None, msg="Processing..."): | |||
| cancel = TaskService.do_cancel(task_id) | |||
| if cancel: | |||
| msg = "Canceled." | |||
| prog = -1 | |||
| if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg | |||
| d = {"progress_msg": msg} | |||
| if prog is not None: d["progress"] = prog | |||
| try: | |||
| TaskService.update_by_id(task_id, d) | |||
| except Exception as e: | |||
| cron_logger.error("set_progress:({}), {}".format(task_id, str(e))) | |||
| if cancel:sys.exit() | |||
| """ | |||
| def chuck_doc(name, binary, tenant_id, cvmdl=None): | |||
| suff = os.path.split(name)[-1].lower().split(".")[-1] | |||
| if suff.find("pdf") >= 0: | |||
| @@ -81,27 +91,17 @@ def chuck_doc(name, binary, tenant_id, cvmdl=None): | |||
| return field | |||
| return TextChunker()(binary) | |||
| """ | |||
| def collect(comm, mod, tm): | |||
| docs = DocumentService.get_newly_uploaded(tm, mod, comm) | |||
| if len(docs) == 0: | |||
| tasks = TaskService.get_tasks(tm, mod, comm) | |||
| if len(tasks) == 0: | |||
| return pd.DataFrame() | |||
| docs = pd.DataFrame(docs) | |||
| mtm = docs["update_time"].max() | |||
| cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm)) | |||
| return docs | |||
| def set_progress(docid, prog, msg="Processing...", begin=False): | |||
| d = {"progress": prog, "progress_msg": msg} | |||
| if begin: | |||
| d["process_begin_at"] = get_format_time() | |||
| try: | |||
| DocumentService.update_by_id( | |||
| docid, {"progress": prog, "progress_msg": msg}) | |||
| except Exception as e: | |||
| cron_logger.error("set_progress:({}), {}".format(docid, str(e))) | |||
| tasks = pd.DataFrame(tasks) | |||
| mtm = tasks["update_time"].max() | |||
| cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm)) | |||
| return tasks | |||
| def build(row, cvmdl): | |||
| @@ -110,97 +110,50 @@ def build(row, cvmdl): | |||
| (int(DOC_MAXIMUM_SIZE / 1024 / 1024))) | |||
| return [] | |||
| # res = ELASTICSEARCH.search(Q("term", doc_id=row["id"])) | |||
| # if ELASTICSEARCH.getTotal(res) > 0: | |||
| # ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]), | |||
| # scripts=""" | |||
| # if(!ctx._source.kb_id.contains('%s')) | |||
| # ctx._source.kb_id.add('%s'); | |||
| # """ % (str(row["kb_id"]), str(row["kb_id"])), | |||
| # idxnm=search.index_name(row["tenant_id"]) | |||
| # ) | |||
| # set_progress(row["id"], 1, "Done") | |||
| # return [] | |||
| random.seed(time.time()) | |||
| set_progress(row["id"], random.randint(0, 20) / | |||
| 100., "Finished preparing! Start to slice file!", True) | |||
| callback = partial(set_progress, row["id"], row["from_page"], row["to_page"]) | |||
| chunker = FACTORY[row["parser_id"]] | |||
| try: | |||
| cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"])) | |||
| obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), row["tenant_id"], cvmdl) | |||
| cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"], | |||
| callback) | |||
| except Exception as e: | |||
| if re.search("(No such file|not found)", str(e)): | |||
| set_progress( | |||
| row["id"], -1, "Can not find file <%s>" % | |||
| row["doc_name"]) | |||
| callback(-1, "Can not find file <%s>" % row["doc_name"]) | |||
| else: | |||
| set_progress( | |||
| row["id"], -1, f"Internal server error: %s" % | |||
| str(e).replace( | |||
| "'", "")) | |||
| callback(-1, f"Internal server error: %s" % str(e).replace("'", "")) | |||
| cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e))) | |||
| return [] | |||
| if not obj.text_chunks and not obj.table_chunks: | |||
| set_progress( | |||
| row["id"], | |||
| 1, | |||
| "Nothing added! Mostly, file type unsupported yet.") | |||
| return [] | |||
| set_progress(row["id"], random.randint(20, 60) / 100., | |||
| "Finished slicing files. Start to embedding the content.") | |||
| callback(msg="Finished slicing files. Start to embedding the content.") | |||
| docs = [] | |||
| doc = { | |||
| "doc_id": row["id"], | |||
| "kb_id": [str(row["kb_id"])], | |||
| "docnm_kwd": os.path.split(row["location"])[-1], | |||
| "title_tks": huqie.qie(row["name"]) | |||
| "doc_id": row["doc_id"], | |||
| "kb_id": [str(row["kb_id"])] | |||
| } | |||
| doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"]) | |||
| output_buffer = BytesIO() | |||
| docs = [] | |||
| for txt, img in obj.text_chunks: | |||
| for ck in cks: | |||
| d = copy.deepcopy(doc) | |||
| d.update(ck) | |||
| md5 = hashlib.md5() | |||
| md5.update((txt + str(d["doc_id"])).encode("utf-8")) | |||
| md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")) | |||
| d["_id"] = md5.hexdigest() | |||
| d["content_ltks"] = huqie.qie(txt) | |||
| d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) | |||
| if not img: | |||
| d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |||
| if not d.get("image"): | |||
| docs.append(d) | |||
| continue | |||
| if isinstance(img, bytes): | |||
| output_buffer = BytesIO(img) | |||
| output_buffer = BytesIO() | |||
| if isinstance(d["image"], bytes): | |||
| output_buffer = BytesIO(d["image"]) | |||
| else: | |||
| img.save(output_buffer, format='JPEG') | |||
| d["image"].save(output_buffer, format='JPEG') | |||
| MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) | |||
| d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) | |||
| d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |||
| docs.append(d) | |||
| for arr, img in obj.table_chunks: | |||
| for i, txt in enumerate(arr): | |||
| d = copy.deepcopy(doc) | |||
| d["content_ltks"] = huqie.qie(txt) | |||
| md5 = hashlib.md5() | |||
| md5.update((txt + str(d["doc_id"])).encode("utf-8")) | |||
| d["_id"] = md5.hexdigest() | |||
| if not img: | |||
| docs.append(d) | |||
| continue | |||
| img.save(output_buffer, format='JPEG') | |||
| MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) | |||
| d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) | |||
| d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |||
| docs.append(d) | |||
| set_progress(row["id"], random.randint(60, 70) / | |||
| 100., "Continue embedding the content.") | |||
| return docs | |||
| @@ -213,7 +166,7 @@ def init_kb(row): | |||
| def embedding(docs, mdl): | |||
| tts, cnts = [rmSpace(d["title_tks"]) for d in docs], [rmSpace(d["content_ltks"]) for d in docs] | |||
| tts, cnts = [d["docnm_kwd"] for d in docs], [d["content_with_weight"] for d in docs] | |||
| tk_count = 0 | |||
| tts, c = mdl.encode(tts) | |||
| tk_count += c | |||
| @@ -223,7 +176,7 @@ def embedding(docs, mdl): | |||
| assert len(vects) == len(docs) | |||
| for i, d in enumerate(docs): | |||
| v = vects[i].tolist() | |||
| d["q_%d_vec"%len(v)] = v | |||
| d["q_%d_vec" % len(v)] = v | |||
| return tk_count | |||
| @@ -239,11 +192,12 @@ def main(comm, mod): | |||
| try: | |||
| embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING) | |||
| cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT) | |||
| #TODO: sequence2text model | |||
| # TODO: sequence2text model | |||
| except Exception as e: | |||
| set_progress(r["id"], -1, str(e)) | |||
| continue | |||
| callback = partial(set_progress, r["id"], r["from_page"], r["to_page"]) | |||
| st_tm = timer() | |||
| cks = build(r, cv_mdl) | |||
| if not cks: | |||
| @@ -254,21 +208,20 @@ def main(comm, mod): | |||
| try: | |||
| tk_count = embedding(cks, embd_mdl) | |||
| except Exception as e: | |||
| set_progress(r["id"], -1, "Embedding error:{}".format(str(e))) | |||
| callback(-1, "Embedding error:{}".format(str(e))) | |||
| cron_logger.error(str(e)) | |||
| continue | |||
| set_progress(r["id"], random.randint(70, 95) / 100., | |||
| "Finished embedding! Start to build index!") | |||
| callback(msg="Finished embedding! Start to build index!") | |||
| init_kb(r) | |||
| chunk_count = len(set([c["_id"] for c in cks])) | |||
| callback(1., "Done!") | |||
| es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"])) | |||
| if es_r: | |||
| set_progress(r["id"], -1, "Index failure!") | |||
| callback(-1, "Index failure!") | |||
| cron_logger.error(str(es_r)) | |||
| else: | |||
| set_progress(r["id"], 1., "Done!") | |||
| DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm) | |||
| DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0) | |||
| cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks))) | |||
| tmf.write(str(r["update_time"]) + "\n") | |||
| @@ -282,5 +235,6 @@ if __name__ == "__main__": | |||
| peewee_logger.setLevel(database_logger.level) | |||
| from mpi4py import MPI | |||
| comm = MPI.COMM_WORLD | |||
| main(comm.Get_size(), comm.Get_rank()) | |||