| orderby = request.args.get("orderby", "create_time") | orderby = request.args.get("orderby", "create_time") | ||||
| desc = request.args.get("desc", True) | desc = request.args.get("desc", True) | ||||
| try: | try: | ||||
| docs = DocumentService.get_by_kb_id( | |||||
| docs, tol = DocumentService.get_by_kb_id( | |||||
| kb_id, page_number, items_per_page, orderby, desc, keywords) | kb_id, page_number, items_per_page, orderby, desc, keywords) | ||||
| return get_json_result(data=docs) | |||||
| return get_json_result(data={"total":tol, "docs": docs}) | |||||
| except Exception as e: | except Exception as e: | ||||
| return server_error_response(e) | return server_error_response(e) | ||||
| @manager.route('/rename', methods=['POST']) | @manager.route('/rename', methods=['POST']) | ||||
| @login_required | @login_required | ||||
| @validate_request("doc_id", "name", "old_name") | |||||
| @validate_request("doc_id", "name") | |||||
| def rename(): | def rename(): | ||||
| req = request.json | req = request.json | ||||
| if pathlib.Path(req["name"].lower()).suffix != pathlib.Path( | |||||
| req["old_name"].lower()).suffix: | |||||
| get_json_result( | |||||
| data=False, | |||||
| retmsg="The extension of file can't be changed", | |||||
| retcode=RetCode.ARGUMENT_ERROR) | |||||
| try: | try: | ||||
| e, doc = DocumentService.get_by_id(req["doc_id"]) | e, doc = DocumentService.get_by_id(req["doc_id"]) | ||||
| if not e: | if not e: | ||||
| return get_data_error_result(retmsg="Document not found!") | return get_data_error_result(retmsg="Document not found!") | ||||
| if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix: | |||||
| return get_json_result( | |||||
| data=False, | |||||
| retmsg="The extension of file can't be changed", | |||||
| retcode=RetCode.ARGUMENT_ERROR) | |||||
| if DocumentService.query(name=req["name"], kb_id=doc.kb_id): | if DocumentService.query(name=req["name"], kb_id=doc.kb_id): | ||||
| return get_data_error_result( | return get_data_error_result( | ||||
| retmsg="Duplicated document name in the same knowledgebase.") | retmsg="Duplicated document name in the same knowledgebase.") |
| cls.model.name.like(f"%%{keywords}%%")) | cls.model.name.like(f"%%{keywords}%%")) | ||||
| else: | else: | ||||
| docs = cls.model.select().where(cls.model.kb_id == kb_id) | docs = cls.model.select().where(cls.model.kb_id == kb_id) | ||||
| count = docs.count() | |||||
| if desc: | if desc: | ||||
| docs = docs.order_by(cls.model.getter_by(orderby).desc()) | docs = docs.order_by(cls.model.getter_by(orderby).desc()) | ||||
| else: | else: | ||||
| docs = docs.paginate(page_number, items_per_page) | docs = docs.paginate(page_number, items_per_page) | ||||
| return list(docs.dicts()) | |||||
| return list(docs.dicts()), count | |||||
| @classmethod | @classmethod | ||||
| @DB.connection_context() | @DB.connection_context() |
| import re | |||||
| from nltk import word_tokenize | |||||
| from rag.nlp import stemmer, huqie | |||||
| BULLET_PATTERN = [[ | |||||
| r"第[零一二三四五六七八九十百]+(编|部分)", | |||||
| r"第[零一二三四五六七八九十百]+章", | |||||
| r"第[零一二三四五六七八九十百]+节", | |||||
| r"第[零一二三四五六七八九十百]+条", | |||||
| r"[\((][零一二三四五六七八九十百]+[\))]", | |||||
| ], [ | |||||
| r"[0-9]{,3}[\. 、]", | |||||
| r"[0-9]{,2}\.[0-9]{,2}", | |||||
| r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}", | |||||
| r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}", | |||||
| ], [ | |||||
| r"第[零一二三四五六七八九十百]+章", | |||||
| r"第[零一二三四五六七八九十百]+节", | |||||
| r"[零一二三四五六七八九十百]+[ 、]", | |||||
| r"[\((][零一二三四五六七八九十百]+[\))]", | |||||
| r"[\((][0-9]{,2}[\))]", | |||||
| ] ,[ | |||||
| r"PART (ONE|TWO|THREE|FOUR|FIVE|SIX|SEVEN|EIGHT|NINE|TEN)", | |||||
| r"Chapter (I+V?|VI*|XI|IX|X)", | |||||
| r"Section [0-9]+", | |||||
| r"Article [0-9]+" | |||||
| ] | |||||
| ] | |||||
| def bullets_category(sections): | |||||
| global BULLET_PATTERN | |||||
| hits = [0] * len(BULLET_PATTERN) | |||||
| for i, pro in enumerate(BULLET_PATTERN): | |||||
| for sec in sections: | |||||
| for p in pro: | |||||
| if re.match(p, sec): | |||||
| hits[i] += 1 | |||||
| break | |||||
| maxium = 0 | |||||
| res = -1 | |||||
| for i,h in enumerate(hits): | |||||
| if h <= maxium:continue | |||||
| res = i | |||||
| maxium = h | |||||
| return res | |||||
| def is_english(texts): | |||||
| eng = 0 | |||||
| for t in texts: | |||||
| if re.match(r"[a-zA-Z]{2,}", t.strip()): | |||||
| eng += 1 | |||||
| if eng / len(texts) > 0.8: | |||||
| return True | |||||
| return False | |||||
| def tokenize(d, t, eng): | |||||
| d["content_with_weight"] = t | |||||
| if eng: | |||||
| t = re.sub(r"([a-z])-([a-z])", r"\1\2", t) | |||||
| d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)]) | |||||
| else: | |||||
| d["content_ltks"] = huqie.qie(t) | |||||
| d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) | |||||
| def remove_contents_table(sections, eng=False): | |||||
| i = 0 | |||||
| while i < len(sections): | |||||
| def get(i): | |||||
| nonlocal sections | |||||
| return (sections[i] if type(sections[i]) == type("") else sections[i][0]).strip() | |||||
| if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", get(i).split("@@")[0], re.IGNORECASE)): | |||||
| i += 1 | |||||
| continue | |||||
| sections.pop(i) | |||||
| if i >= len(sections): break | |||||
| prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2]) | |||||
| while not prefix: | |||||
| sections.pop(i) | |||||
| if i >= len(sections): break | |||||
| prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2]) | |||||
| sections.pop(i) | |||||
| if i >= len(sections) or not prefix: break | |||||
| for j in range(i, min(i+128, len(sections))): | |||||
| if not re.match(prefix, get(j)): | |||||
| continue | |||||
| for _ in range(i, j):sections.pop(i) | |||||
| break |
| import copy | import copy | ||||
| import random | import random | ||||
| import re | import re | ||||
| from io import BytesIO | |||||
| from docx import Document | |||||
| import numpy as np | import numpy as np | ||||
| from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table | |||||
| from rag.parser import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table, \ | |||||
| hierarchical_merge, make_colon_as_title, naive_merge | |||||
| from rag.nlp import huqie | from rag.nlp import huqie | ||||
| from rag.parser.docx_parser import HuDocxParser | from rag.parser.docx_parser import HuDocxParser | ||||
| from rag.parser.pdf_parser import HuParser | from rag.parser.pdf_parser import HuParser | ||||
| self._table_transformer_job(zoomin) | self._table_transformer_job(zoomin) | ||||
| callback(0.68, "Table analysis finished") | callback(0.68, "Table analysis finished") | ||||
| self._text_merge() | self._text_merge() | ||||
| column_width = np.median([b["x1"] - b["x0"] for b in self.boxes]) | |||||
| self._concat_downward(concat_between_pages=False) | self._concat_downward(concat_between_pages=False) | ||||
| self._filter_forpages() | self._filter_forpages() | ||||
| self._merge_with_same_bullet() | self._merge_with_same_bullet() | ||||
| callback(0.8, "Text extraction finished") | callback(0.8, "Text extraction finished") | ||||
| return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes] | |||||
| return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes], tbls | |||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |||||
| doc = { | doc = { | ||||
| "docnm_kwd": filename, | "docnm_kwd": filename, | ||||
| "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | ||||
| callback(0.1, "Start to parse.") | callback(0.1, "Start to parse.") | ||||
| doc_parser = HuDocxParser() | doc_parser = HuDocxParser() | ||||
| # TODO: table of contents need to be removed | # TODO: table of contents need to be removed | ||||
| sections, tbls = doc_parser(binary if binary else filename) | |||||
| remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200))) | |||||
| sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page) | |||||
| remove_contents_table(sections, eng=is_english(random.choices([t for t,_ in sections], k=200))) | |||||
| callback(0.8, "Finish parsing.") | callback(0.8, "Finish parsing.") | ||||
| elif re.search(r"\.pdf$", filename, re.IGNORECASE): | elif re.search(r"\.pdf$", filename, re.IGNORECASE): | ||||
| pdf_parser = Pdf() | pdf_parser = Pdf() | ||||
| callback(0.8, "Finish parsing.") | callback(0.8, "Finish parsing.") | ||||
| else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)") | else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)") | ||||
| bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)]) | |||||
| projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections) | |||||
| levels = [[]] * len(BULLET_PATTERN[bull]) + 2 | |||||
| for i, (txt, layout) in enumerate(sections): | |||||
| for j, p in enumerate(BULLET_PATTERN[bull]): | |||||
| if re.match(p, txt.strip()): | |||||
| projs[i] = j | |||||
| levels[j].append(i) | |||||
| break | |||||
| else: | |||||
| if re.search(r"(title|head)", layout): | |||||
| projs[i] = BULLET_PATTERN[bull] | |||||
| levels[BULLET_PATTERN[bull]].append(i) | |||||
| else: | |||||
| levels[BULLET_PATTERN[bull] + 1].append(i) | |||||
| sections = [t for t,_ in sections] | |||||
| def binary_search(arr, target): | |||||
| if target > arr[-1]: return len(arr) - 1 | |||||
| if target > arr[0]: return -1 | |||||
| s, e = 0, len(arr) | |||||
| while e - s > 1: | |||||
| i = (e + s) // 2 | |||||
| if target > arr[i]: | |||||
| s = i | |||||
| continue | |||||
| elif target < arr[i]: | |||||
| e = i | |||||
| continue | |||||
| else: | |||||
| assert False | |||||
| return s | |||||
| cks = [] | |||||
| readed = [False] * len(sections) | |||||
| levels = levels[::-1] | |||||
| for i, arr in enumerate(levels): | |||||
| for j in arr: | |||||
| if readed[j]: continue | |||||
| readed[j] = True | |||||
| cks.append([j]) | |||||
| if i + 1 == len(levels) - 1: continue | |||||
| for ii in range(i + 1, len(levels)): | |||||
| jj = binary_search(levels[ii], j) | |||||
| if jj < 0: break | |||||
| if jj > cks[-1][-1]: cks[-1].pop(-1) | |||||
| cks[-1].append(levels[ii][jj]) | |||||
| make_colon_as_title(sections) | |||||
| bull = bullets_category([t for t in random.choices([t for t,_ in sections], k=100)]) | |||||
| if bull >= 0: cks = hierarchical_merge(bull, sections, 3) | |||||
| else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?")) | |||||
| sections = [t for t, _ in sections] | |||||
| # is it English | # is it English | ||||
| eng = is_english(random.choices(sections, k=218)) | eng = is_english(random.choices(sections, k=218)) | ||||
| tokenize(d, r, eng) | tokenize(d, r, eng) | ||||
| d["image"] = img | d["image"] = img | ||||
| res.append(d) | res.append(d) | ||||
| print("TABLE", d["content_with_weight"]) | |||||
| # wrap up to es documents | # wrap up to es documents | ||||
| for ck in cks: | for ck in cks: | ||||
| print("\n-".join(ck[::-1])) | |||||
| ck = "\n".join(ck[::-1]) | |||||
| d = copy.deepcopy(doc) | d = copy.deepcopy(doc) | ||||
| ck = "\n".join(ck) | |||||
| if pdf_parser: | if pdf_parser: | ||||
| d["image"] = pdf_parser.crop(ck) | d["image"] = pdf_parser.crop(ck) | ||||
| ck = pdf_parser.remove_tag(ck) | ck = pdf_parser.remove_tag(ck) | ||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| import sys | import sys | ||||
| chunk(sys.argv[1]) | |||||
| def dummy(a, b): | |||||
| pass | |||||
| chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy) |
| from io import BytesIO | from io import BytesIO | ||||
| from docx import Document | from docx import Document | ||||
| import numpy as np | import numpy as np | ||||
| from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize | |||||
| from rag.parser import bullets_category, is_english, tokenize, remove_contents_table, hierarchical_merge, \ | |||||
| make_colon_as_title | |||||
| from rag.nlp import huqie | from rag.nlp import huqie | ||||
| from rag.parser.docx_parser import HuDocxParser | from rag.parser.docx_parser import HuDocxParser | ||||
| from rag.parser.pdf_parser import HuParser | from rag.parser.pdf_parser import HuParser | ||||
| from rag.settings import cron_logger | |||||
| class Docx(HuDocxParser): | class Docx(HuDocxParser): | ||||
| line = re.sub(r"\u3000", " ", line).strip() | line = re.sub(r"\u3000", " ", line).strip() | ||||
| return line | return line | ||||
| def __call__(self, filename, binary=None): | |||||
| def __call__(self, filename, binary=None, from_page=0, to_page=100000): | |||||
| self.doc = Document( | self.doc = Document( | ||||
| filename) if not binary else Document(BytesIO(binary)) | filename) if not binary else Document(BytesIO(binary)) | ||||
| lines = [self.__clean(p.text) for p in self.doc.paragraphs] | |||||
| pn = 0 | |||||
| lines = [] | |||||
| for p in self.doc.paragraphs: | |||||
| if pn > to_page:break | |||||
| if from_page <= pn < to_page and p.text.strip(): lines.append(self.__clean(p.text)) | |||||
| for run in p.runs: | |||||
| if 'lastRenderedPageBreak' in run._element.xml: | |||||
| pn += 1 | |||||
| continue | |||||
| if 'w:br' in run._element.xml and 'type="page"' in run._element.xml: | |||||
| pn += 1 | |||||
| return [l for l in lines if l] | return [l for l in lines if l] | ||||
| start = timer() | start = timer() | ||||
| self._layouts_paddle(zoomin) | self._layouts_paddle(zoomin) | ||||
| callback(0.77, "Layout analysis finished") | callback(0.77, "Layout analysis finished") | ||||
| print("paddle layouts:", timer()-start) | |||||
| bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3) | |||||
| # is it English | |||||
| eng = is_english([b["text"] for b in bxs]) | |||||
| # Merge vertically | |||||
| i = 0 | |||||
| while i + 1 < len(bxs): | |||||
| b = bxs[i] | |||||
| b_ = bxs[i + 1] | |||||
| if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]): | |||||
| bxs.pop(i) | |||||
| continue | |||||
| concatting_feats = [ | |||||
| b["text"].strip()[-1] in ",;:'\",、‘“;:-", | |||||
| len(b["text"].strip())>1 and b["text"].strip()[-2] in ",;:'\",‘“、;:", | |||||
| b["text"].strip()[0] in "。;?!?”)),,、:", | |||||
| ] | |||||
| # features for not concating | |||||
| feats = [ | |||||
| b.get("layoutno",0) != b.get("layoutno",0), | |||||
| b["text"].strip()[-1] in "。?!?", | |||||
| eng and b["text"].strip()[-1] in ".!?", | |||||
| b["page_number"] == b_["page_number"] and b_["top"] - \ | |||||
| b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5, | |||||
| b["page_number"] < b_["page_number"] and abs( | |||||
| b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4 | |||||
| ] | |||||
| if any(feats) and not any(concatting_feats): | |||||
| i += 1 | |||||
| continue | |||||
| # merge up and down | |||||
| b["bottom"] = b_["bottom"] | |||||
| b["text"] += b_["text"] | |||||
| b["x0"] = min(b["x0"], b_["x0"]) | |||||
| b["x1"] = max(b["x1"], b_["x1"]) | |||||
| bxs.pop(i + 1) | |||||
| cron_logger.info("paddle layouts:".format((timer()-start)/(self.total_page+0.1))) | |||||
| self._naive_vertical_merge() | |||||
| callback(0.8, "Text extraction finished") | callback(0.8, "Text extraction finished") | ||||
| return [b["text"] + self._line_tag(b, zoomin) for b in bxs] | |||||
| return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes] | |||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |||||
| doc = { | doc = { | ||||
| "docnm_kwd": filename, | "docnm_kwd": filename, | ||||
| "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | ||||
| # is it English | # is it English | ||||
| eng = is_english(sections) | eng = is_english(sections) | ||||
| # Remove 'Contents' part | # Remove 'Contents' part | ||||
| i = 0 | |||||
| while i < len(sections): | |||||
| if not re.match(r"(contents|目录|目次|table of contents)$", re.sub(r"( | |\u3000)+", "", sections[i].split("@@")[0], re.IGNORECASE)): | |||||
| i += 1 | |||||
| continue | |||||
| sections.pop(i) | |||||
| if i >= len(sections): break | |||||
| prefix = sections[i].strip()[:3] if not eng else " ".join(sections[i].strip().split(" ")[:2]) | |||||
| while not prefix: | |||||
| sections.pop(i) | |||||
| if i >= len(sections): break | |||||
| prefix = sections[i].strip()[:3] if not eng else " ".join(sections[i].strip().split(" ")[:2]) | |||||
| sections.pop(i) | |||||
| if i >= len(sections) or not prefix: break | |||||
| for j in range(i, min(i+128, len(sections))): | |||||
| if not re.match(prefix, sections[j]): | |||||
| continue | |||||
| for _ in range(i, j):sections.pop(i) | |||||
| break | |||||
| remove_contents_table(sections, eng) | |||||
| make_colon_as_title(sections) | |||||
| bull = bullets_category(sections) | bull = bullets_category(sections) | ||||
| projs = [len(BULLET_PATTERN[bull])] * len(sections) | |||||
| for i, sec in enumerate(sections): | |||||
| for j,p in enumerate(BULLET_PATTERN[bull]): | |||||
| if re.match(p, sec.strip()): | |||||
| projs[i] = j | |||||
| break | |||||
| readed = [0] * len(sections) | |||||
| cks = [] | |||||
| for pr in range(len(BULLET_PATTERN[bull])-1, 1, -1): | |||||
| for i in range(len(sections)): | |||||
| if readed[i] or projs[i] < pr: | |||||
| continue | |||||
| # find father and grand-father and grand...father | |||||
| p = projs[i] | |||||
| readed[i] = 1 | |||||
| ck = [sections[i]] | |||||
| for j in range(i-1, -1, -1): | |||||
| if projs[j] >= p:continue | |||||
| ck.append(sections[j]) | |||||
| readed[j] = 1 | |||||
| p = projs[j] | |||||
| if p == 0: break | |||||
| cks.append(ck[::-1]) | |||||
| cks = hierarchical_merge(bull, sections, 3) | |||||
| if not cks: callback(0.99, "No chunk parsed out.") | |||||
| res = [] | res = [] | ||||
| # wrap up to es documents | # wrap up to es documents | ||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| import sys | import sys | ||||
| chunk(sys.argv[1]) | |||||
| def dummy(a, b): | |||||
| pass | |||||
| chunk(sys.argv[1], callback=dummy) |
| import copy | import copy | ||||
| import re | import re | ||||
| from rag.app import tokenize | |||||
| from rag.parser import tokenize | |||||
| from rag.nlp import huqie | from rag.nlp import huqie | ||||
| from rag.parser.pdf_parser import HuParser | from rag.parser.pdf_parser import HuParser | ||||
| from rag.utils import num_tokens_from_string | from rag.utils import num_tokens_from_string | ||||
| return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls | return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls | ||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |||||
| pdf_parser = None | pdf_parser = None | ||||
| paper = {} | paper = {} | ||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| import sys | import sys | ||||
| chunk(sys.argv[1]) | |||||
| def dummy(a, b): | |||||
| pass | |||||
| chunk(sys.argv[1], callback=dummy) |
| import copy | |||||
| import re | |||||
| from rag.app import laws | |||||
| from rag.parser import is_english, tokenize, naive_merge | |||||
| from rag.nlp import huqie | |||||
| from rag.parser.pdf_parser import HuParser | |||||
| from rag.settings import cron_logger | |||||
| class Pdf(HuParser): | |||||
| def __call__(self, filename, binary=None, from_page=0, | |||||
| to_page=100000, zoomin=3, callback=None): | |||||
| self.__images__( | |||||
| filename if not binary else binary, | |||||
| zoomin, | |||||
| from_page, | |||||
| to_page) | |||||
| callback(0.1, "OCR finished") | |||||
| from timeit import default_timer as timer | |||||
| start = timer() | |||||
| self._layouts_paddle(zoomin) | |||||
| callback(0.77, "Layout analysis finished") | |||||
| cron_logger.info("paddle layouts:".format((timer()-start)/(self.total_page+0.1))) | |||||
| self._naive_vertical_merge() | |||||
| return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes] | |||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |||||
| doc = { | |||||
| "docnm_kwd": filename, | |||||
| "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | |||||
| } | |||||
| doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"]) | |||||
| pdf_parser = None | |||||
| sections = [] | |||||
| if re.search(r"\.docx?$", filename, re.IGNORECASE): | |||||
| callback(0.1, "Start to parse.") | |||||
| for txt in laws.Docx()(filename, binary): | |||||
| sections.append((txt, "")) | |||||
| callback(0.8, "Finish parsing.") | |||||
| elif re.search(r"\.pdf$", filename, re.IGNORECASE): | |||||
| pdf_parser = Pdf() | |||||
| sections = pdf_parser(filename if not binary else binary, | |||||
| from_page=from_page, to_page=to_page, callback=callback) | |||||
| elif re.search(r"\.txt$", filename, re.IGNORECASE): | |||||
| callback(0.1, "Start to parse.") | |||||
| txt = "" | |||||
| if binary:txt = binary.decode("utf-8") | |||||
| else: | |||||
| with open(filename, "r") as f: | |||||
| while True: | |||||
| l = f.readline() | |||||
| if not l:break | |||||
| txt += l | |||||
| sections = txt.split("\n") | |||||
| sections = [(l,"") for l in sections if l] | |||||
| callback(0.8, "Finish parsing.") | |||||
| else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)") | |||||
| cks = naive_merge(sections, kwargs.get("chunk_token_num", 128), kwargs.get("delimer", "\n。;!?")) | |||||
| eng = is_english(cks) | |||||
| res = [] | |||||
| # wrap up to es documents | |||||
| for ck in cks: | |||||
| print("--", ck) | |||||
| d = copy.deepcopy(doc) | |||||
| if pdf_parser: | |||||
| d["image"] = pdf_parser.crop(ck) | |||||
| ck = pdf_parser.remove_tag(ck) | |||||
| tokenize(d, ck, eng) | |||||
| res.append(d) | |||||
| return res | |||||
| if __name__ == "__main__": | |||||
| import sys | |||||
| def dummy(a, b): | |||||
| pass | |||||
| chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy) |
| import copy | import copy | ||||
| import re | import re | ||||
| from collections import Counter | from collections import Counter | ||||
| from rag.app import tokenize | |||||
| from rag.parser import tokenize | |||||
| from rag.nlp import huqie | from rag.nlp import huqie | ||||
| from rag.parser.pdf_parser import HuParser | from rag.parser.pdf_parser import HuParser | ||||
| import numpy as np | import numpy as np | ||||
| } | } | ||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |||||
| pdf_parser = None | pdf_parser = None | ||||
| paper = {} | paper = {} | ||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| import sys | import sys | ||||
| chunk(sys.argv[1]) | |||||
| def dummy(a, b): | |||||
| pass | |||||
| chunk(sys.argv[1], callback=dummy) |
| from io import BytesIO | from io import BytesIO | ||||
| from pptx import Presentation | from pptx import Presentation | ||||
| from rag.app import tokenize, is_english | |||||
| from rag.parser import tokenize, is_english | |||||
| from rag.nlp import huqie | from rag.nlp import huqie | ||||
| from rag.parser.pdf_parser import HuParser | from rag.parser.pdf_parser import HuParser | ||||
| return res | return res | ||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |||||
| doc = { | doc = { | ||||
| "docnm_kwd": filename, | "docnm_kwd": filename, | ||||
| "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | ||||
| if __name__== "__main__": | if __name__== "__main__": | ||||
| import sys | import sys | ||||
| print(chunk(sys.argv[1])) | |||||
| def dummy(a, b): | |||||
| pass | |||||
| chunk(sys.argv[1], callback=dummy) | |||||
| from io import BytesIO | from io import BytesIO | ||||
| from nltk import word_tokenize | from nltk import word_tokenize | ||||
| from openpyxl import load_workbook | from openpyxl import load_workbook | ||||
| from rag.app import is_english | |||||
| from rag.parser import is_english | |||||
| from rag.nlp import huqie, stemmer | from rag.nlp import huqie, stemmer | ||||
| return d | return d | ||||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None): | |||||
| def chunk(filename, binary=None, callback=None, **kwargs): | |||||
| res = [] | res = [] | ||||
| if re.search(r"\.xlsx?$", filename, re.IGNORECASE): | if re.search(r"\.xlsx?$", filename, re.IGNORECASE): | ||||
| if __name__== "__main__": | if __name__== "__main__": | ||||
| import sys | import sys | ||||
| def kk(rat, ss): | |||||
| def dummy(a, b): | |||||
| pass | pass | ||||
| print(chunk(sys.argv[1], callback=kk)) | |||||
| chunk(sys.argv[1], callback=dummy) | |||||
| import copy | |||||
| from .pdf_parser import HuParser as PdfParser | from .pdf_parser import HuParser as PdfParser | ||||
| from .docx_parser import HuDocxParser as DocxParser | from .docx_parser import HuDocxParser as DocxParser | ||||
| from .excel_parser import HuExcelParser as ExcelParser | from .excel_parser import HuExcelParser as ExcelParser | ||||
| import re | |||||
| from nltk import word_tokenize | |||||
| from rag.nlp import stemmer, huqie | |||||
| from ..utils import num_tokens_from_string | |||||
| BULLET_PATTERN = [[ | |||||
| r"第[零一二三四五六七八九十百0-9]+(分?编|部分)", | |||||
| r"第[零一二三四五六七八九十百0-9]+章", | |||||
| r"第[零一二三四五六七八九十百0-9]+节", | |||||
| r"第[零一二三四五六七八九十百0-9]+条", | |||||
| r"[\((][零一二三四五六七八九十百]+[\))]", | |||||
| ], [ | |||||
| r"第[0-9]+章", | |||||
| r"第[0-9]+节", | |||||
| r"[0-9]{,3}[\. 、]", | |||||
| r"[0-9]{,2}\.[0-9]{,2}", | |||||
| r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}", | |||||
| r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}", | |||||
| ], [ | |||||
| r"第[零一二三四五六七八九十百0-9]+章", | |||||
| r"第[零一二三四五六七八九十百0-9]+节", | |||||
| r"[零一二三四五六七八九十百]+[ 、]", | |||||
| r"[\((][零一二三四五六七八九十百]+[\))]", | |||||
| r"[\((][0-9]{,2}[\))]", | |||||
| ], [ | |||||
| r"PART (ONE|TWO|THREE|FOUR|FIVE|SIX|SEVEN|EIGHT|NINE|TEN)", | |||||
| r"Chapter (I+V?|VI*|XI|IX|X)", | |||||
| r"Section [0-9]+", | |||||
| r"Article [0-9]+" | |||||
| ] | |||||
| ] | |||||
| def bullets_category(sections): | |||||
| global BULLET_PATTERN | |||||
| hits = [0] * len(BULLET_PATTERN) | |||||
| for i, pro in enumerate(BULLET_PATTERN): | |||||
| for sec in sections: | |||||
| for p in pro: | |||||
| if re.match(p, sec): | |||||
| hits[i] += 1 | |||||
| break | |||||
| maxium = 0 | |||||
| res = -1 | |||||
| for i, h in enumerate(hits): | |||||
| if h <= maxium: continue | |||||
| res = i | |||||
| maxium = h | |||||
| return res | |||||
| def is_english(texts): | |||||
| eng = 0 | |||||
| for t in texts: | |||||
| if re.match(r"[a-zA-Z]{2,}", t.strip()): | |||||
| eng += 1 | |||||
| if eng / len(texts) > 0.8: | |||||
| return True | |||||
| return False | |||||
| def tokenize(d, t, eng): | |||||
| d["content_with_weight"] = t | |||||
| if eng: | |||||
| t = re.sub(r"([a-z])-([a-z])", r"\1\2", t) | |||||
| d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)]) | |||||
| else: | |||||
| d["content_ltks"] = huqie.qie(t) | |||||
| d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"]) | |||||
| def remove_contents_table(sections, eng=False): | |||||
| i = 0 | |||||
| while i < len(sections): | |||||
| def get(i): | |||||
| nonlocal sections | |||||
| return (sections[i] if type(sections[i]) == type("") else sections[i][0]).strip() | |||||
| if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", | |||||
| re.sub(r"( | |\u3000)+", "", get(i).split("@@")[0], re.IGNORECASE)): | |||||
| i += 1 | |||||
| continue | |||||
| sections.pop(i) | |||||
| if i >= len(sections): break | |||||
| prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2]) | |||||
| while not prefix: | |||||
| sections.pop(i) | |||||
| if i >= len(sections): break | |||||
| prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2]) | |||||
| sections.pop(i) | |||||
| if i >= len(sections) or not prefix: break | |||||
| for j in range(i, min(i + 128, len(sections))): | |||||
| if not re.match(prefix, get(j)): | |||||
| continue | |||||
| for _ in range(i, j): sections.pop(i) | |||||
| break | |||||
| def make_colon_as_title(sections): | |||||
| if not sections: return [] | |||||
| if type(sections[0]) == type(""): return sections | |||||
| i = 0 | |||||
| while i < len(sections): | |||||
| txt, layout = sections[i] | |||||
| i += 1 | |||||
| txt = txt.split("@")[0].strip() | |||||
| if not txt: | |||||
| continue | |||||
| if txt[-1] not in "::": | |||||
| continue | |||||
| txt = txt[::-1] | |||||
| arr = re.split(r"([。?!!?;;]| .)", txt) | |||||
| if len(arr) < 2 or len(arr[1]) < 32: | |||||
| continue | |||||
| sections.insert(i - 1, (arr[0][::-1], "title")) | |||||
| i += 1 | |||||
| def hierarchical_merge(bull, sections, depth): | |||||
| if not sections or bull < 0: return [] | |||||
| if type(sections[0]) == type(""): sections = [(s, "") for s in sections] | |||||
| sections = [(t,o) for t, o in sections if t and len(t.split("@")[0].strip()) > 1 and not re.match(r"[0-9]+$", t.split("@")[0].strip())] | |||||
| bullets_size = len(BULLET_PATTERN[bull]) | |||||
| levels = [[] for _ in range(bullets_size + 2)] | |||||
| def not_title(txt): | |||||
| if re.match(r"第[零一二三四五六七八九十百0-9]+条", txt): return False | |||||
| if len(txt) >= 128: return True | |||||
| return re.search(r"[,;,。;!!]", txt) | |||||
| for i, (txt, layout) in enumerate(sections): | |||||
| for j, p in enumerate(BULLET_PATTERN[bull]): | |||||
| if re.match(p, txt.strip()) and not not_title(txt): | |||||
| levels[j].append(i) | |||||
| break | |||||
| else: | |||||
| if re.search(r"(title|head)", layout): | |||||
| levels[bullets_size].append(i) | |||||
| else: | |||||
| levels[bullets_size + 1].append(i) | |||||
| sections = [t for t, _ in sections] | |||||
| for s in sections: print("--", s) | |||||
| def binary_search(arr, target): | |||||
| if not arr: return -1 | |||||
| if target > arr[-1]: return len(arr) - 1 | |||||
| if target < arr[0]: return -1 | |||||
| s, e = 0, len(arr) | |||||
| while e - s > 1: | |||||
| i = (e + s) // 2 | |||||
| if target > arr[i]: | |||||
| s = i | |||||
| continue | |||||
| elif target < arr[i]: | |||||
| e = i | |||||
| continue | |||||
| else: | |||||
| assert False | |||||
| return s | |||||
| cks = [] | |||||
| readed = [False] * len(sections) | |||||
| levels = levels[::-1] | |||||
| for i, arr in enumerate(levels[:depth]): | |||||
| for j in arr: | |||||
| if readed[j]: continue | |||||
| readed[j] = True | |||||
| cks.append([j]) | |||||
| if i + 1 == len(levels) - 1: continue | |||||
| for ii in range(i + 1, len(levels)): | |||||
| jj = binary_search(levels[ii], j) | |||||
| if jj < 0: continue | |||||
| if jj > cks[-1][-1]: cks[-1].pop(-1) | |||||
| cks[-1].append(levels[ii][jj]) | |||||
| for ii in cks[-1]: readed[ii] = True | |||||
| for i in range(len(cks)): | |||||
| cks[i] = [sections[j] for j in cks[i][::-1]] | |||||
| print("--------------\n", "\n* ".join(cks[i])) | |||||
| return cks | |||||
| def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?"): | |||||
| if not sections: return [] | |||||
| if type(sections[0]) == type(""): sections = [(s, "") for s in sections] | |||||
| cks = [""] | |||||
| tk_nums = [0] | |||||
| def add_chunk(t, pos): | |||||
| nonlocal cks, tk_nums, delimiter | |||||
| tnum = num_tokens_from_string(t) | |||||
| if tnum < 8: pos = "" | |||||
| if tk_nums[-1] > chunk_token_num: | |||||
| cks.append(t + pos) | |||||
| tk_nums.append(tnum) | |||||
| else: | |||||
| cks[-1] += t + pos | |||||
| tk_nums[-1] += tnum | |||||
| for sec, pos in sections: | |||||
| s, e = 0, 1 | |||||
| while e < len(sec): | |||||
| if sec[e] in delimiter: | |||||
| add_chunk(sec[s: e+1], pos) | |||||
| s = e + 1 | |||||
| e = s + 1 | |||||
| else: | |||||
| e += 1 | |||||
| if s < e: add_chunk(sec[s: e], pos) | |||||
| return cks | |||||
| return lines | return lines | ||||
| return ["\n".join(lines)] | return ["\n".join(lines)] | ||||
| def __call__(self, fnm): | |||||
| def __call__(self, fnm, from_page=0, to_page=100000): | |||||
| self.doc = Document(fnm) if isinstance(fnm, str) else Document(BytesIO(fnm)) | self.doc = Document(fnm) if isinstance(fnm, str) else Document(BytesIO(fnm)) | ||||
| secs = [(p.text, p.style.name) for p in self.doc.paragraphs] | |||||
| pn = 0 | |||||
| secs = [] | |||||
| for p in self.doc.paragraphs: | |||||
| if pn > to_page: break | |||||
| if from_page <= pn < to_page and p.text.strip(): secs.append((p.text, p.style.name)) | |||||
| for run in p.runs: | |||||
| if 'lastRenderedPageBreak' in run._element.xml: | |||||
| pn += 1 | |||||
| continue | |||||
| if 'w:br' in run._element.xml and 'type="page"' in run._element.xml: | |||||
| pn += 1 | |||||
| tbls = [self.__extract_table_content(tb) for tb in self.doc.tables] | tbls = [self.__extract_table_content(tb) for tb in self.doc.tables] | ||||
| return secs, tbls | return secs, tbls |
| i += 1 | i += 1 | ||||
| self.boxes = bxs | self.boxes = bxs | ||||
| def _naive_vertical_merge(self): | |||||
| bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3) | |||||
| i = 0 | |||||
| while i + 1 < len(bxs): | |||||
| b = bxs[i] | |||||
| b_ = bxs[i + 1] | |||||
| if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]): | |||||
| bxs.pop(i) | |||||
| continue | |||||
| concatting_feats = [ | |||||
| b["text"].strip()[-1] in ",;:'\",、‘“;:-", | |||||
| len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:", | |||||
| b["text"].strip()[0] in "。;?!?”)),,、:", | |||||
| ] | |||||
| # features for not concating | |||||
| feats = [ | |||||
| b.get("layoutno", 0) != b.get("layoutno", 0), | |||||
| b["text"].strip()[-1] in "。?!?", | |||||
| self.is_english and b["text"].strip()[-1] in ".!?", | |||||
| b["page_number"] == b_["page_number"] and b_["top"] - \ | |||||
| b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5, | |||||
| b["page_number"] < b_["page_number"] and abs( | |||||
| b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4 | |||||
| ] | |||||
| if any(feats) and not any(concatting_feats): | |||||
| i += 1 | |||||
| continue | |||||
| # merge up and down | |||||
| b["bottom"] = b_["bottom"] | |||||
| b["text"] += b_["text"] | |||||
| b["x0"] = min(b["x0"], b_["x0"]) | |||||
| b["x1"] = max(b["x1"], b_["x1"]) | |||||
| bxs.pop(i + 1) | |||||
| self.boxes = bxs | |||||
| def _concat_downward(self, concat_between_pages=True): | def _concat_downward(self, concat_between_pages=True): | ||||
| # count boxes in the same row as a feature | # count boxes in the same row as a feature | ||||
| for i in range(len(self.boxes)): | for i in range(len(self.boxes)): | ||||
| def _filter_forpages(self): | def _filter_forpages(self): | ||||
| if not self.boxes: | if not self.boxes: | ||||
| return | return | ||||
| findit = False | |||||
| i = 0 | i = 0 | ||||
| while i < len(self.boxes): | while i < len(self.boxes): | ||||
| if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())): | if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())): | ||||
| i += 1 | i += 1 | ||||
| continue | continue | ||||
| findit = True | |||||
| eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip()) | eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip()) | ||||
| self.boxes.pop(i) | self.boxes.pop(i) | ||||
| if i >= len(self.boxes): break | if i >= len(self.boxes): break | ||||
| continue | continue | ||||
| for k in range(i, j): self.boxes.pop(i) | for k in range(i, j): self.boxes.pop(i) | ||||
| break | break | ||||
| if findit:return | |||||
| page_dirty = [0] * len(self.page_images) | |||||
| for b in self.boxes: | |||||
| if re.search(r"(··|··|··)", b["text"]): | |||||
| page_dirty[b["page_number"]-1] += 1 | |||||
| page_dirty = set([i+1 for i, t in enumerate(page_dirty) if t > 3]) | |||||
| if not page_dirty: return | |||||
| i = 0 | |||||
| while i < len(self.boxes): | |||||
| if self.boxes[i]["page_number"] in page_dirty: | |||||
| self.boxes.pop(i) | |||||
| continue | |||||
| i += 1 | |||||
| def _merge_with_same_bullet(self): | def _merge_with_same_bullet(self): | ||||
| i = 0 | i = 0 | ||||
| while i + 1 < len(self.boxes): | while i + 1 < len(self.boxes): | ||||
| b = self.boxes[i] | b = self.boxes[i] | ||||
| b_ = self.boxes[i + 1] | b_ = self.boxes[i + 1] | ||||
| if not b["text"].strip(): | |||||
| self.boxes.pop(i) | |||||
| continue | |||||
| if not b_["text"].strip(): | |||||
| self.boxes.pop(i+1) | |||||
| continue | |||||
| if b["text"].strip()[0] != b_["text"].strip()[0] \ | if b["text"].strip()[0] != b_["text"].strip()[0] \ | ||||
| or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm") \ | or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm") \ | ||||
| or huqie.is_chinese(b["text"].strip()[0]) \ | |||||
| or b["top"] > b_["bottom"]: | or b["top"] > b_["bottom"]: | ||||
| i += 1 | i += 1 | ||||
| continue | continue | ||||
| self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm)) | self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm)) | ||||
| self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in | self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in | ||||
| enumerate(self.pdf.pages[page_from:page_to])] | enumerate(self.pdf.pages[page_from:page_to])] | ||||
| self.page_chars = [[c for c in self.pdf.pages[i].chars if self._has_color(c)] for i in | |||||
| range(len(self.page_images))] | |||||
| self.page_chars = [[c for c in page.chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]] | |||||
| self.total_page = len(self.pdf.pages) | self.total_page = len(self.pdf.pages) | ||||
| except Exception as e: | except Exception as e: | ||||
| self.pdf = fitz.open(fnm) if isinstance(fnm, str) else fitz.open(stream=fnm, filetype="pdf") | self.pdf = fitz.open(fnm) if isinstance(fnm, str) else fitz.open(stream=fnm, filetype="pdf") | ||||
| self.page_chars = [] | self.page_chars = [] | ||||
| mat = fitz.Matrix(zoomin, zoomin) | mat = fitz.Matrix(zoomin, zoomin) | ||||
| self.total_page = len(self.pdf) | self.total_page = len(self.pdf) | ||||
| for page in self.pdf[page_from:page_to]: | |||||
| pix = page.getPixmap(matrix=mat) | |||||
| for i, page in enumerate(self.pdf): | |||||
| if i < page_from:continue | |||||
| if i >= page_to:break | |||||
| pix = page.get_pixmap(matrix=mat) | |||||
| img = Image.frombytes("RGB", [pix.width, pix.height], | img = Image.frombytes("RGB", [pix.width, pix.height], | ||||
| pix.samples) | pix.samples) | ||||
| self.page_images.append(img) | self.page_images.append(img) | ||||
| self.page_chars.append([]) | self.page_chars.append([]) | ||||
| logging.info("Images converted.") | logging.info("Images converted.") | ||||
| self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=100))) for i in range(len(self.page_chars))] | |||||
| self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in range(len(self.page_chars))] | |||||
| if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2: | if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2: | ||||
| self.is_english = True | self.is_english = True | ||||
| else: | else: | ||||
| # np.max([c["bottom"] for c in chars])) | # np.max([c["bottom"] for c in chars])) | ||||
| self.__ocr_paddle(i + 1, img, chars, zoomin) | self.__ocr_paddle(i + 1, img, chars, zoomin) | ||||
| if not self.is_english and not all([c for c in self.page_chars]) and self.boxes: | |||||
| self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(self.boxes, k=30)])) | |||||
| if not self.is_english and not any([c for c in self.page_chars]) and self.boxes: | |||||
| self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices([b for bxs in self.boxes for b in bxs], k=30)])) | |||||
| logging.info("Is it English:", self.is_english) | logging.info("Is it English:", self.is_english) | ||||