Browse Source

Refactor for total_tokens. (#4652)

### What problem does this PR solve?

#4567
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
tags/v0.16.0
Kevin Hu 9 months ago
parent
commit
4776fa5e4e
No account linked to committer's email address
3 changed files with 79 additions and 52 deletions
  1. 38
    34
      rag/llm/chat_model.py
  2. 28
    16
      rag/llm/embedding_model.py
  3. 13
    2
      rag/llm/rerank_model.py

+ 38
- 34
rag/llm/chat_model.py View File

ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
else: else:
ans += LENGTH_NOTIFICATION_EN ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except openai.APIError as e: except openai.APIError as e:
return "**ERROR**: " + str(e), 0 return "**ERROR**: " + str(e), 0


resp.choices[0].delta.content = "" resp.choices[0].delta.content = ""
ans += resp.choices[0].delta.content ans += resp.choices[0].delta.content


if not hasattr(resp, "usage") or not resp.usage:
total_tokens = (
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
elif isinstance(resp.usage, dict):
total_tokens = resp.usage.get("total_tokens", total_tokens)
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else: else:
total_tokens = resp.usage.total_tokens
total_tokens = tol


if resp.choices[0].finish_reason == "length": if resp.choices[0].finish_reason == "length":
if is_chinese(ans): if is_chinese(ans):


yield total_tokens yield total_tokens


def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0



class GptTurbo(Base): class GptTurbo(Base):
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"): def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
else: else:
ans += LENGTH_NOTIFICATION_EN ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except openai.APIError as e: except openai.APIError as e:
return "**ERROR**: " + str(e), 0 return "**ERROR**: " + str(e), 0


if not resp.choices[0].delta.content: if not resp.choices[0].delta.content:
resp.choices[0].delta.content = "" resp.choices[0].delta.content = ""
ans += resp.choices[0].delta.content ans += resp.choices[0].delta.content
total_tokens = (
(
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
if not hasattr(resp, "usage")
else resp.usage["total_tokens"]
)
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens = tol
if resp.choices[0].finish_reason == "length": if resp.choices[0].finish_reason == "length":
if is_chinese([ans]): if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
tk_count = 0 tk_count = 0
if response.status_code == HTTPStatus.OK: if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]['message']['content'] ans += response.output.choices[0]['message']['content']
tk_count += response.usage.total_tokens
tk_count += self.total_token_count(response)
if response.output.choices[0].get("finish_reason", "") == "length": if response.output.choices[0].get("finish_reason", "") == "length":
if is_chinese([ans]): if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
for resp in response: for resp in response:
if resp.status_code == HTTPStatus.OK: if resp.status_code == HTTPStatus.OK:
ans = resp.output.choices[0]['message']['content'] ans = resp.output.choices[0]['message']['content']
tk_count = resp.usage.total_tokens
tk_count = self.total_token_count(resp)
if resp.output.choices[0].get("finish_reason", "") == "length": if resp.output.choices[0].get("finish_reason", "") == "length":
if is_chinese(ans): if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
else: else:
ans += LENGTH_NOTIFICATION_EN ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except Exception as e: except Exception as e:
return "**ERROR**: " + str(e), 0 return "**ERROR**: " + str(e), 0


ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
else: else:
ans += LENGTH_NOTIFICATION_EN ans += LENGTH_NOTIFICATION_EN
tk_count = resp.usage.total_tokens
tk_count = self.total_token_count(resp)
if resp.choices[0].finish_reason == "stop": if resp.choices[0].finish_reason == "stop":
tk_count = resp.usage.total_tokens
tk_count = self.total_token_count(resp)
yield ans yield ans
except Exception as e: except Exception as e:
yield ans + "\n**ERROR**: " + str(e) yield ans + "\n**ERROR**: " + str(e)
ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
else: else:
ans += LENGTH_NOTIFICATION_EN ans += LENGTH_NOTIFICATION_EN
return ans, response["usage"]["total_tokens"]
return ans, self.total_token_count(response)
except Exception as e: except Exception as e:
return "**ERROR**: " + str(e), 0 return "**ERROR**: " + str(e), 0


if "choices" in resp and "delta" in resp["choices"][0]: if "choices" in resp and "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"] text = resp["choices"][0]["delta"]["content"]
ans += text ans += text
total_tokens = (
total_tokens + num_tokens_from_string(text)
if "usage" not in resp
else resp["usage"]["total_tokens"]
)
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(text)
else:
total_tokens = tol
yield ans yield ans


except Exception as e: except Exception as e:
ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
else: else:
ans += LENGTH_NOTIFICATION_EN ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except openai.APIError as e: except openai.APIError as e:
return "**ERROR**: " + str(e), 0 return "**ERROR**: " + str(e), 0


yield 0 yield 0




class GroqChat:
class GroqChat(Base):
def __init__(self, key, model_name, base_url=''): def __init__(self, key, model_name, base_url=''):
from groq import Groq from groq import Groq
self.client = Groq(api_key=key) self.client = Groq(api_key=key)
ans += LENGTH_NOTIFICATION_CN ans += LENGTH_NOTIFICATION_CN
else: else:
ans += LENGTH_NOTIFICATION_EN ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except Exception as e: except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0 return ans + "\n**ERROR**: " + str(e), 0


**gen_conf **gen_conf
).body ).body
ans = response['result'] ans = response['result']
return ans, response["usage"]["total_tokens"]
return ans, self.total_token_count(response)


except Exception as e: except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0 return ans + "\n**ERROR**: " + str(e), 0
for resp in response: for resp in response:
resp = resp.body resp = resp.body
ans += resp['result'] ans += resp['result']
total_tokens = resp["usage"]["total_tokens"]
total_tokens = self.total_token_count(resp)


yield ans yield ans



+ 28
- 16
rag/llm/embedding_model.py View File

def encode_queries(self, text: str): def encode_queries(self, text: str):
raise NotImplementedError("Please implement encode method!") raise NotImplementedError("Please implement encode method!")


def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0



class DefaultEmbedding(Base): class DefaultEmbedding(Base):
_model = None _model = None
_model_name = "" _model_name = ""
_model_lock = threading.Lock() _model_lock = threading.Lock()

def __init__(self, key, model_name, **kwargs): def __init__(self, key, model_name, **kwargs):
""" """
If you have trouble downloading HuggingFace models, -_^ this might help!! If you have trouble downloading HuggingFace models, -_^ this might help!!
res = self.client.embeddings.create(input=texts[i:i + batch_size], res = self.client.embeddings.create(input=texts[i:i + batch_size],
model=self.model_name) model=self.model_name)
ress.extend([d.embedding for d in res.data]) ress.extend([d.embedding for d in res.data])
total_tokens += res.usage.total_tokens
total_tokens += self.total_token_count(res)
return np.array(ress), total_tokens return np.array(ress), total_tokens


def encode_queries(self, text): def encode_queries(self, text):
res = self.client.embeddings.create(input=[truncate(text, 8191)], res = self.client.embeddings.create(input=[truncate(text, 8191)],
model=self.model_name) model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
return np.array(res.data[0].embedding), self.total_token_count(res)




class LocalAIEmbed(Base): class LocalAIEmbed(Base):
for e in resp["output"]["embeddings"]: for e in resp["output"]["embeddings"]:
embds[e["text_index"]] = e["embedding"] embds[e["text_index"]] = e["embedding"]
res.extend(embds) res.extend(embds)
token_count += resp["usage"]["total_tokens"]
token_count += self.total_token_count(resp)
return np.array(res), token_count return np.array(res), token_count
except Exception as e: except Exception as e:
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name) raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
text_type="query" text_type="query"
) )
return np.array(resp["output"]["embeddings"][0] return np.array(resp["output"]["embeddings"][0]
["embedding"]), resp["usage"]["total_tokens"]
["embedding"]), self.total_token_count(resp)
except Exception: except Exception:
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name) raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
return np.array([]), 0 return np.array([]), 0
res = self.client.embeddings.create(input=txt, res = self.client.embeddings.create(input=txt,
model=self.model_name) model=self.model_name)
arr.append(res.data[0].embedding) arr.append(res.data[0].embedding)
tks_num += res.usage.total_tokens
tks_num += self.total_token_count(res)
return np.array(arr), tks_num return np.array(arr), tks_num


def encode_queries(self, text): def encode_queries(self, text):
res = self.client.embeddings.create(input=text, res = self.client.embeddings.create(input=text,
model=self.model_name) model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
return np.array(res.data[0].embedding), self.total_token_count(res)




class OllamaEmbed(Base): class OllamaEmbed(Base):
for i in range(0, len(texts), batch_size): for i in range(0, len(texts), batch_size):
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name) res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
ress.extend([d.embedding for d in res.data]) ress.extend([d.embedding for d in res.data])
total_tokens += res.usage.total_tokens
total_tokens += self.total_token_count(res)
return np.array(ress), total_tokens return np.array(ress), total_tokens


def encode_queries(self, text): def encode_queries(self, text):
res = self.client.embeddings.create(input=[text], res = self.client.embeddings.create(input=[text],
model=self.model_name) model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
return np.array(res.data[0].embedding), self.total_token_count(res)




class YoudaoEmbed(Base): class YoudaoEmbed(Base):
} }
res = requests.post(self.base_url, headers=self.headers, json=data).json() res = requests.post(self.base_url, headers=self.headers, json=data).json()
ress.extend([d["embedding"] for d in res["data"]]) ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
token_count += self.total_token_count(res)
return np.array(ress), token_count return np.array(ress), token_count


def encode_queries(self, text): def encode_queries(self, text):
res = self.client.embeddings(input=texts[i:i + batch_size], res = self.client.embeddings(input=texts[i:i + batch_size],
model=self.model_name) model=self.model_name)
ress.extend([d.embedding for d in res.data]) ress.extend([d.embedding for d in res.data])
token_count += res.usage.total_tokens
token_count += self.total_token_count(res)
return np.array(ress), token_count return np.array(ress), token_count


def encode_queries(self, text): def encode_queries(self, text):
res = self.client.embeddings(input=[truncate(text, 8196)], res = self.client.embeddings(input=[truncate(text, 8196)],
model=self.model_name) model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
return np.array(res.data[0].embedding), self.total_token_count(res)




class BedrockEmbed(Base): class BedrockEmbed(Base):
} }
res = requests.post(self.base_url, headers=self.headers, json=payload).json() res = requests.post(self.base_url, headers=self.headers, json=payload).json()
ress.extend([d["embedding"] for d in res["data"]]) ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
token_count += self.total_token_count(res)
return np.array(ress), token_count return np.array(ress), token_count


def encode_queries(self, text): def encode_queries(self, text):
if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch): if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}") raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
ress.extend([d["embedding"] for d in res["data"]]) ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
token_count += self.total_token_count(res)
return np.array(ress), token_count return np.array(ress), token_count


def encode_queries(self, text): def encode_queries(self, text):
res = requests.post(self.base_url, json=payload, headers=self.headers).json() res = requests.post(self.base_url, json=payload, headers=self.headers).json()
if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1: if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}") raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]
return np.array(res["data"][0]["embedding"]), self.total_token_count(res)




class ReplicateEmbed(Base): class ReplicateEmbed(Base):
res = self.client.do(model=self.model_name, texts=texts).body res = self.client.do(model=self.model_name, texts=texts).body
return ( return (
np.array([r["embedding"] for r in res["data"]]), np.array([r["embedding"] for r in res["data"]]),
res["usage"]["total_tokens"],
self.total_token_count(res),
) )


def encode_queries(self, text): def encode_queries(self, text):
res = self.client.do(model=self.model_name, texts=[text]).body res = self.client.do(model=self.model_name, texts=[text]).body
return ( return (
np.array([r["embedding"] for r in res["data"]]), np.array([r["embedding"] for r in res["data"]]),
res["usage"]["total_tokens"],
self.total_token_count(res),
) )





+ 13
- 2
rag/llm/rerank_model.py View File

def similarity(self, query: str, texts: list): def similarity(self, query: str, texts: list):
raise NotImplementedError("Please implement encode method!") raise NotImplementedError("Please implement encode method!")


def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0



class DefaultRerank(Base): class DefaultRerank(Base):
_model = None _model = None
rank = np.zeros(len(texts), dtype=float) rank = np.zeros(len(texts), dtype=float)
for d in res["results"]: for d in res["results"]:
rank[d["index"]] = d["relevance_score"] rank[d["index"]] = d["relevance_score"]
return rank, res["usage"]["total_tokens"]
return rank, self.total_token_count(res)




class YoudaoRerank(DefaultRerank): class YoudaoRerank(DefaultRerank):
rank = np.zeros(len(texts), dtype=float) rank = np.zeros(len(texts), dtype=float)
for d in res["results"]: for d in res["results"]:
rank[d["index"]] = d["relevance_score"] rank[d["index"]] = d["relevance_score"]
return rank, res["usage"]["total_tokens"]
return rank, self.total_token_count(res)




class VoyageRerank(Base): class VoyageRerank(Base):

Loading…
Cancel
Save