Browse Source

Refactor for total_tokens. (#4652)

### What problem does this PR solve?

#4567
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
tags/v0.16.0
Kevin Hu 9 months ago
parent
commit
4776fa5e4e
No account linked to committer's email address
3 changed files with 79 additions and 52 deletions
  1. 38
    34
      rag/llm/chat_model.py
  2. 28
    16
      rag/llm/embedding_model.py
  3. 13
    2
      rag/llm/rerank_model.py

+ 38
- 34
rag/llm/chat_model.py View File

@@ -53,7 +53,7 @@ class Base(ABC):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except openai.APIError as e:
return "**ERROR**: " + str(e), 0

@@ -75,15 +75,11 @@ class Base(ABC):
resp.choices[0].delta.content = ""
ans += resp.choices[0].delta.content

if not hasattr(resp, "usage") or not resp.usage:
total_tokens = (
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
elif isinstance(resp.usage, dict):
total_tokens = resp.usage.get("total_tokens", total_tokens)
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens = resp.usage.total_tokens
total_tokens = tol

if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
@@ -97,6 +93,17 @@ class Base(ABC):

yield total_tokens

def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0


class GptTurbo(Base):
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
@@ -182,7 +189,7 @@ class BaiChuanChat(Base):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except openai.APIError as e:
return "**ERROR**: " + str(e), 0

@@ -212,14 +219,11 @@ class BaiChuanChat(Base):
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
ans += resp.choices[0].delta.content
total_tokens = (
(
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
if not hasattr(resp, "usage")
else resp.usage["total_tokens"]
)
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens = tol
if resp.choices[0].finish_reason == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
@@ -256,7 +260,7 @@ class QWenChat(Base):
tk_count = 0
if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]['message']['content']
tk_count += response.usage.total_tokens
tk_count += self.total_token_count(response)
if response.output.choices[0].get("finish_reason", "") == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
@@ -292,7 +296,7 @@ class QWenChat(Base):
for resp in response:
if resp.status_code == HTTPStatus.OK:
ans = resp.output.choices[0]['message']['content']
tk_count = resp.usage.total_tokens
tk_count = self.total_token_count(resp)
if resp.output.choices[0].get("finish_reason", "") == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
@@ -334,7 +338,7 @@ class ZhipuChat(Base):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except Exception as e:
return "**ERROR**: " + str(e), 0

@@ -364,9 +368,9 @@ class ZhipuChat(Base):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
tk_count = resp.usage.total_tokens
tk_count = self.total_token_count(resp)
if resp.choices[0].finish_reason == "stop":
tk_count = resp.usage.total_tokens
tk_count = self.total_token_count(resp)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
@@ -569,7 +573,7 @@ class MiniMaxChat(Base):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response["usage"]["total_tokens"]
return ans, self.total_token_count(response)
except Exception as e:
return "**ERROR**: " + str(e), 0

@@ -603,11 +607,11 @@ class MiniMaxChat(Base):
if "choices" in resp and "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"]
ans += text
total_tokens = (
total_tokens + num_tokens_from_string(text)
if "usage" not in resp
else resp["usage"]["total_tokens"]
)
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(text)
else:
total_tokens = tol
yield ans

except Exception as e:
@@ -640,7 +644,7 @@ class MistralChat(Base):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except openai.APIError as e:
return "**ERROR**: " + str(e), 0

@@ -838,7 +842,7 @@ class GeminiChat(Base):
yield 0


class GroqChat:
class GroqChat(Base):
def __init__(self, key, model_name, base_url=''):
from groq import Groq
self.client = Groq(api_key=key)
@@ -863,7 +867,7 @@ class GroqChat:
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, response.usage.total_tokens
return ans, self.total_token_count(response)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0

@@ -1255,7 +1259,7 @@ class BaiduYiyanChat(Base):
**gen_conf
).body
ans = response['result']
return ans, response["usage"]["total_tokens"]
return ans, self.total_token_count(response)

except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
@@ -1283,7 +1287,7 @@ class BaiduYiyanChat(Base):
for resp in response:
resp = resp.body
ans += resp['result']
total_tokens = resp["usage"]["total_tokens"]
total_tokens = self.total_token_count(resp)

yield ans


+ 28
- 16
rag/llm/embedding_model.py View File

@@ -44,11 +44,23 @@ class Base(ABC):
def encode_queries(self, text: str):
raise NotImplementedError("Please implement encode method!")

def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0


class DefaultEmbedding(Base):
_model = None
_model_name = ""
_model_lock = threading.Lock()

def __init__(self, key, model_name, **kwargs):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
@@ -115,13 +127,13 @@ class OpenAIEmbed(Base):
res = self.client.embeddings.create(input=texts[i:i + batch_size],
model=self.model_name)
ress.extend([d.embedding for d in res.data])
total_tokens += res.usage.total_tokens
total_tokens += self.total_token_count(res)
return np.array(ress), total_tokens

def encode_queries(self, text):
res = self.client.embeddings.create(input=[truncate(text, 8191)],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
return np.array(res.data[0].embedding), self.total_token_count(res)


class LocalAIEmbed(Base):
@@ -188,7 +200,7 @@ class QWenEmbed(Base):
for e in resp["output"]["embeddings"]:
embds[e["text_index"]] = e["embedding"]
res.extend(embds)
token_count += resp["usage"]["total_tokens"]
token_count += self.total_token_count(resp)
return np.array(res), token_count
except Exception as e:
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
@@ -203,7 +215,7 @@ class QWenEmbed(Base):
text_type="query"
)
return np.array(resp["output"]["embeddings"][0]
["embedding"]), resp["usage"]["total_tokens"]
["embedding"]), self.total_token_count(resp)
except Exception:
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
return np.array([]), 0
@@ -229,13 +241,13 @@ class ZhipuEmbed(Base):
res = self.client.embeddings.create(input=txt,
model=self.model_name)
arr.append(res.data[0].embedding)
tks_num += res.usage.total_tokens
tks_num += self.total_token_count(res)
return np.array(arr), tks_num

def encode_queries(self, text):
res = self.client.embeddings.create(input=text,
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
return np.array(res.data[0].embedding), self.total_token_count(res)


class OllamaEmbed(Base):
@@ -318,13 +330,13 @@ class XinferenceEmbed(Base):
for i in range(0, len(texts), batch_size):
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
ress.extend([d.embedding for d in res.data])
total_tokens += res.usage.total_tokens
total_tokens += self.total_token_count(res)
return np.array(ress), total_tokens

def encode_queries(self, text):
res = self.client.embeddings.create(input=[text],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
return np.array(res.data[0].embedding), self.total_token_count(res)


class YoudaoEmbed(Base):
@@ -383,7 +395,7 @@ class JinaEmbed(Base):
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
token_count += self.total_token_count(res)
return np.array(ress), token_count

def encode_queries(self, text):
@@ -447,13 +459,13 @@ class MistralEmbed(Base):
res = self.client.embeddings(input=texts[i:i + batch_size],
model=self.model_name)
ress.extend([d.embedding for d in res.data])
token_count += res.usage.total_tokens
token_count += self.total_token_count(res)
return np.array(ress), token_count

def encode_queries(self, text):
res = self.client.embeddings(input=[truncate(text, 8196)],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
return np.array(res.data[0].embedding), self.total_token_count(res)


class BedrockEmbed(Base):
@@ -565,7 +577,7 @@ class NvidiaEmbed(Base):
}
res = requests.post(self.base_url, headers=self.headers, json=payload).json()
ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
token_count += self.total_token_count(res)
return np.array(ress), token_count

def encode_queries(self, text):
@@ -677,7 +689,7 @@ class SILICONFLOWEmbed(Base):
if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
token_count += self.total_token_count(res)
return np.array(ress), token_count

def encode_queries(self, text):
@@ -689,7 +701,7 @@ class SILICONFLOWEmbed(Base):
res = requests.post(self.base_url, json=payload, headers=self.headers).json()
if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]
return np.array(res["data"][0]["embedding"]), self.total_token_count(res)


class ReplicateEmbed(Base):
@@ -727,14 +739,14 @@ class BaiduYiyanEmbed(Base):
res = self.client.do(model=self.model_name, texts=texts).body
return (
np.array([r["embedding"] for r in res["data"]]),
res["usage"]["total_tokens"],
self.total_token_count(res),
)

def encode_queries(self, text):
res = self.client.do(model=self.model_name, texts=[text]).body
return (
np.array([r["embedding"] for r in res["data"]]),
res["usage"]["total_tokens"],
self.total_token_count(res),
)



+ 13
- 2
rag/llm/rerank_model.py View File

@@ -42,6 +42,17 @@ class Base(ABC):
def similarity(self, query: str, texts: list):
raise NotImplementedError("Please implement encode method!")

def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0


class DefaultRerank(Base):
_model = None
@@ -115,7 +126,7 @@ class JinaRerank(Base):
rank = np.zeros(len(texts), dtype=float)
for d in res["results"]:
rank[d["index"]] = d["relevance_score"]
return rank, res["usage"]["total_tokens"]
return rank, self.total_token_count(res)


class YoudaoRerank(DefaultRerank):
@@ -417,7 +428,7 @@ class BaiduYiyanRerank(Base):
rank = np.zeros(len(texts), dtype=float)
for d in res["results"]:
rank[d["index"]] = d["relevance_score"]
return rank, res["usage"]["total_tokens"]
return rank, self.total_token_count(res)


class VoyageRerank(Base):

Loading…
Cancel
Save