Pārlūkot izejas kodu

truncate text to fitin embedding model (#692)

### What problem does this PR solve?


### Type of change

- [x] Refactoring
tags/v0.6.0
KevinHuSh pirms 1 gada
vecāks
revīzija
4153a36683
Revīzijas autora e-pasta adrese nav piesaistīta nevienam kontam
2 mainītis faili ar 11 papildinājumiem un 6 dzēšanām
  1. 7
    6
      rag/llm/embedding_model.py
  2. 4
    0
      rag/utils/__init__.py

+ 7
- 6
rag/llm/embedding_model.py Parādīt failu

@@ -27,8 +27,7 @@ import torch
import numpy as np

from api.utils.file_utils import get_project_base_directory, get_home_cache_dir
from rag.utils import num_tokens_from_string

from rag.utils import num_tokens_from_string, truncate

try:
flag_model = FlagModel(os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"),
@@ -70,7 +69,7 @@ class DefaultEmbedding(Base):
self.model = flag_model

def encode(self, texts: list, batch_size=32):
texts = [t[:2000] for t in texts]
texts = [truncate(t, 2048) for t in texts]
token_count = 0
for t in texts:
token_count += num_tokens_from_string(t)
@@ -93,12 +92,14 @@ class OpenAIEmbed(Base):
self.model_name = model_name

def encode(self, texts: list, batch_size=32):
texts = [truncate(t, 8196) for t in texts]
res = self.client.embeddings.create(input=texts,
model=self.model_name)
return np.array([d.embedding for d in res.data]), res.usage.total_tokens
return np.array([d.embedding for d in res.data]
), res.usage.total_tokens

def encode_queries(self, text):
res = self.client.embeddings.create(input=[text],
res = self.client.embeddings.create(input=[truncate(text, 8196)],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens

@@ -112,7 +113,7 @@ class QWenEmbed(Base):
import dashscope
res = []
token_count = 0
texts = [txt[:2048] for txt in texts]
texts = [truncate(t, 2048) for t in texts]
for i in range(0, len(texts), batch_size):
resp = dashscope.TextEmbedding.call(
model=self.model_name,

+ 4
- 0
rag/utils/__init__.py Parādīt failu

@@ -63,3 +63,7 @@ def num_tokens_from_string(string: str) -> int:
num_tokens = len(encoder.encode(string))
return num_tokens


def truncate(string: str, max_len: int) -> int:
"""Returns truncated text if the length of text exceed max_len."""
return encoder.decode(encoder.encode(string)[:max_len])

Notiek ielāde…
Atcelt
Saglabāt