| @@ -20,7 +20,7 @@ | |||
| <img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=7d09f1" alt="license"> | |||
| </a> | |||
| </p> | |||
| [RagFlow](http://demo.ragflow.io) is a knowledge management platform built on custom-build document understanding engine and LLM, with reasoned and well-founded answers to your question. Clone this repository, you can deploy your own knowledge management platform to empower your business with AI. | |||
| [RagFlow](https://demo.ragflow.io) is a knowledge management platform built on custom-build document understanding engine and LLM, with reasoned and well-founded answers to your question. Clone this repository, you can deploy your own knowledge management platform to empower your business with AI. | |||
| <div align="center" style="margin-top:20px;margin-bottom:20px;"> | |||
| @@ -56,12 +56,12 @@ | |||
| Then, you need to check the following command: | |||
| ```bash | |||
| 121:/ragflow# sysctl vm.max_map_count | |||
| $ sysctl vm.max_map_count | |||
| vm.max_map_count = 262144 | |||
| ``` | |||
| If **vm.max_map_count** is not greater than 65535: | |||
| ```bash | |||
| 121:/ragflow# sudo sysctl -w vm.max_map_count=262144 | |||
| $ sudo sysctl -w vm.max_map_count=262144 | |||
| ``` | |||
| Note that this change is reset after a system reboot. To render your change permanent, add or update the following line in **/etc/sysctl.conf**: | |||
| @@ -126,6 +126,7 @@ Open your browser, enter the IP address of your server, _**Hallelujah**_ again! | |||
| <div align="center" style="margin-top:20px;margin-bottom:20px;"> | |||
| <img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/> | |||
| </div> | |||
| ## 🔧 Configurations | |||
| If you need to change the default setting of the system when you deploy it. There several ways to configure it. | |||
| @@ -45,7 +45,7 @@ def set_api_key(): | |||
| for llm in LLMService.query(fid=factory): | |||
| if llm.model_type == LLMType.EMBEDDING.value: | |||
| mdl = EmbeddingModel[factory]( | |||
| req["api_key"], llm.llm_name) | |||
| req["api_key"], llm.llm_name, req.get("base_url")) | |||
| try: | |||
| arr, tc = mdl.encode(["Test if the api key is available"]) | |||
| if len(arr[0]) == 0 or tc == 0: | |||
| @@ -54,7 +54,7 @@ def set_api_key(): | |||
| msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e) | |||
| elif not chat_passed and llm.model_type == LLMType.CHAT.value: | |||
| mdl = ChatModel[factory]( | |||
| req["api_key"], llm.llm_name) | |||
| req["api_key"], llm.llm_name, req.get("base_url")) | |||
| try: | |||
| m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], { | |||
| "temperature": 0.9}) | |||
| @@ -83,7 +83,9 @@ def set_api_key(): | |||
| llm_factory=factory, | |||
| llm_name=llm.llm_name, | |||
| model_type=llm.model_type, | |||
| api_key=req["api_key"]) | |||
| api_key=req["api_key"], | |||
| api_base=req.get("base_url", "") | |||
| ) | |||
| return get_json_result(data=True) | |||
| @@ -84,19 +84,21 @@ class TenantLLMService(CommonService): | |||
| if model_config["llm_factory"] not in EmbeddingModel: | |||
| return | |||
| return EmbeddingModel[model_config["llm_factory"]]( | |||
| model_config["api_key"], model_config["llm_name"]) | |||
| model_config["api_key"], model_config["llm_name"], model_config["api_base"]) | |||
| if llm_type == LLMType.IMAGE2TEXT.value: | |||
| if model_config["llm_factory"] not in CvModel: | |||
| return | |||
| return CvModel[model_config["llm_factory"]]( | |||
| model_config["api_key"], model_config["llm_name"], lang) | |||
| model_config["api_key"], model_config["llm_name"], lang, | |||
| base_url=model_config["api_base"] | |||
| ) | |||
| if llm_type == LLMType.CHAT.value: | |||
| if model_config["llm_factory"] not in ChatModel: | |||
| return | |||
| return ChatModel[model_config["llm_factory"]]( | |||
| model_config["api_key"], model_config["llm_name"]) | |||
| model_config["api_key"], model_config["llm_name"], model_config["api_base"]) | |||
| @classmethod | |||
| @DB.connection_context() | |||
| @@ -43,6 +43,8 @@ class Recognizer(object): | |||
| if not os.path.exists(model_file_path): | |||
| model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc") | |||
| model_file_path = os.path.join(model_dir, task_name + ".onnx") | |||
| else: | |||
| model_file_path = os.path.join(model_dir, task_name + ".onnx") | |||
| if not os.path.exists(model_file_path): | |||
| raise ValueError("not find model file path {}".format( | |||
| @@ -31,8 +31,9 @@ class Base(ABC): | |||
| class GptTurbo(Base): | |||
| def __init__(self, key, model_name="gpt-3.5-turbo"): | |||
| self.client = OpenAI(api_key=key) | |||
| def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"): | |||
| if not base_url: base_url="https://api.openai.com/v1" | |||
| self.client = OpenAI(api_key=key, base_url=base_url) | |||
| self.model_name = model_name | |||
| def chat(self, system, history, gen_conf): | |||
| @@ -53,9 +54,10 @@ class GptTurbo(Base): | |||
| class MoonshotChat(GptTurbo): | |||
| def __init__(self, key, model_name="moonshot-v1-8k"): | |||
| def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"): | |||
| if not base_url: base_url="https://api.moonshot.cn/v1" | |||
| self.client = OpenAI( | |||
| api_key=key, base_url="https://api.moonshot.cn/v1",) | |||
| api_key=key, base_url=base_url) | |||
| self.model_name = model_name | |||
| def chat(self, system, history, gen_conf): | |||
| @@ -76,7 +78,7 @@ class MoonshotChat(GptTurbo): | |||
| class QWenChat(Base): | |||
| def __init__(self, key, model_name=Generation.Models.qwen_turbo): | |||
| def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs): | |||
| import dashscope | |||
| dashscope.api_key = key | |||
| self.model_name = model_name | |||
| @@ -105,7 +107,7 @@ class QWenChat(Base): | |||
| class ZhipuChat(Base): | |||
| def __init__(self, key, model_name="glm-3-turbo"): | |||
| def __init__(self, key, model_name="glm-3-turbo", **kwargs): | |||
| self.client = ZhipuAI(api_key=key) | |||
| self.model_name = model_name | |||
| @@ -154,7 +156,7 @@ class LocalLLM(Base): | |||
| return do_rpc | |||
| def __init__(self, key, model_name="glm-3-turbo"): | |||
| def __init__(self, **kwargs): | |||
| self.client = LocalLLM.RPCProxy("127.0.0.1", 7860) | |||
| def chat(self, system, history, gen_conf): | |||
| @@ -67,8 +67,9 @@ class Base(ABC): | |||
| class GptV4(Base): | |||
| def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese"): | |||
| self.client = OpenAI(api_key=key) | |||
| def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"): | |||
| if not base_url: base_url="https://api.openai.com/v1" | |||
| self.client = OpenAI(api_key=key, base_url=base_url) | |||
| self.model_name = model_name | |||
| self.lang = lang | |||
| @@ -84,7 +85,7 @@ class GptV4(Base): | |||
| class QWenCV(Base): | |||
| def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese"): | |||
| def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs): | |||
| import dashscope | |||
| dashscope.api_key = key | |||
| self.model_name = model_name | |||
| @@ -123,7 +124,7 @@ class QWenCV(Base): | |||
| class Zhipu4V(Base): | |||
| def __init__(self, key, model_name="glm-4v", lang="Chinese"): | |||
| def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs): | |||
| self.client = ZhipuAI(api_key=key) | |||
| self.model_name = model_name | |||
| self.lang = lang | |||
| @@ -140,7 +141,7 @@ class Zhipu4V(Base): | |||
| class LocalCV(Base): | |||
| def __init__(self, key, model_name="glm-4v", lang="Chinese"): | |||
| def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs): | |||
| pass | |||
| def describe(self, image, max_tokens=1024): | |||
| @@ -51,7 +51,7 @@ class Base(ABC): | |||
| class HuEmbedding(Base): | |||
| def __init__(self, key="", model_name=""): | |||
| def __init__(self, **kwargs): | |||
| """ | |||
| If you have trouble downloading HuggingFace models, -_^ this might help!! | |||
| @@ -81,8 +81,9 @@ class HuEmbedding(Base): | |||
| class OpenAIEmbed(Base): | |||
| def __init__(self, key, model_name="text-embedding-ada-002"): | |||
| self.client = OpenAI(api_key=key) | |||
| def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"): | |||
| if not base_url: base_url="https://api.openai.com/v1" | |||
| self.client = OpenAI(api_key=key, base_url=base_url) | |||
| self.model_name = model_name | |||
| def encode(self, texts: list, batch_size=32): | |||
| @@ -98,7 +99,7 @@ class OpenAIEmbed(Base): | |||
| class QWenEmbed(Base): | |||
| def __init__(self, key, model_name="text_embedding_v2"): | |||
| def __init__(self, key, model_name="text_embedding_v2", **kwargs): | |||
| dashscope.api_key = key | |||
| self.model_name = model_name | |||
| @@ -131,7 +132,7 @@ class QWenEmbed(Base): | |||
| class ZhipuEmbed(Base): | |||
| def __init__(self, key, model_name="embedding-2"): | |||
| def __init__(self, key, model_name="embedding-2", **kwargs): | |||
| self.client = ZhipuAI(api_key=key) | |||
| self.model_name = model_name | |||
| @@ -280,4 +280,5 @@ if __name__ == "__main__": | |||
| from mpi4py import MPI | |||
| comm = MPI.COMM_WORLD | |||
| main(int(sys.argv[2]), int(sys.argv[1])) | |||
| while True: | |||
| main(int(sys.argv[2]), int(sys.argv[1])) | |||