### What problem does this PR solve? Issue link:#221 ### Type of change - [x] New Feature (non-breaking change which adds functionality)tags/v0.1.0
| @@ -1,6 +1,6 @@ | |||
| <div align="center"> | |||
| <a href="https://demo.ragflow.io/"> | |||
| <img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo"> | |||
| <img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo"> | |||
| </a> | |||
| </div> | |||
| @@ -124,12 +124,12 @@ | |||
| * Running on all addresses (0.0.0.0) | |||
| * Running on http://127.0.0.1:9380 | |||
| * Running on http://172.22.0.5:9380 | |||
| * Running on http://x.x.x.x:9380 | |||
| INFO:werkzeug:Press CTRL+C to quit | |||
| ``` | |||
| 5. In your web browser, enter the IP address of your server as prompted and log in to RAGFlow. | |||
| > In the given scenario, you only need to enter `http://IP_of_RAGFlow ` (sans port number) as the default HTTP serving port `80` can be omitted when using the default configurations. | |||
| 5. In your web browser, enter the IP address of your server and log in to RAGFlow. | |||
| > In the given scenario, you only need to enter `http://IP_OF_YOUR_MACHINE` (sans port number) as the default HTTP serving port `80` can be omitted when using the default configurations. | |||
| 6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key. | |||
| > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information. | |||
| @@ -168,6 +168,11 @@ $ cd ragflow/docker | |||
| $ docker compose up -d | |||
| ``` | |||
| ## 🆕 Latest Features | |||
| - Support [Ollam](./docs/ollama.md) for local LLM deployment. | |||
| - Support Chinese UI. | |||
| ## 📜 Roadmap | |||
| See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162) | |||
| @@ -124,12 +124,12 @@ | |||
| * Running on all addresses (0.0.0.0) | |||
| * Running on http://127.0.0.1:9380 | |||
| * Running on http://172.22.0.5:9380 | |||
| * Running on http://x.x.x.x:9380 | |||
| INFO:werkzeug:Press CTRL+C to quit | |||
| ``` | |||
| 5. ウェブブラウザで、プロンプトに従ってサーバーの IP アドレスを入力し、RAGFlow にログインします。 | |||
| > デフォルトの設定を使用する場合、デフォルトの HTTP サービングポート `80` は省略できるので、与えられたシナリオでは、`http://172.22.0.5`(ポート番号は省略)だけを入力すればよい。 | |||
| > デフォルトの設定を使用する場合、デフォルトの HTTP サービングポート `80` は省略できるので、与えられたシナリオでは、`http://IP_OF_YOUR_MACHINE`(ポート番号は省略)だけを入力すればよい。 | |||
| 6. [service_conf.yaml](./docker/service_conf.yaml) で、`user_default_llm` で希望の LLM ファクトリを選択し、`API_KEY` フィールドを対応する API キーで更新する。 | |||
| > 詳しくは [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) を参照してください。 | |||
| @@ -168,6 +168,11 @@ $ cd ragflow/docker | |||
| $ docker compose up -d | |||
| ``` | |||
| ## 🆕 最新の新機能 | |||
| - [Ollam](./docs/ollama.md) を使用した大規模モデルのローカライズされたデプロイメントをサポートします。 | |||
| - 中国語インターフェースをサポートします。 | |||
| ## 📜 ロードマップ | |||
| [RAGFlow ロードマップ 2024](https://github.com/infiniflow/ragflow/issues/162) を参照 | |||
| @@ -124,12 +124,12 @@ | |||
| * Running on all addresses (0.0.0.0) | |||
| * Running on http://127.0.0.1:9380 | |||
| * Running on http://172.22.0.5:9380 | |||
| * Running on http://x.x.x.x:9380 | |||
| INFO:werkzeug:Press CTRL+C to quit | |||
| ``` | |||
| 5. 根据刚才的界面提示在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。 | |||
| > 上面这个例子中,您只需输入 http://172.22.0.5 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80)。 | |||
| 5. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。 | |||
| > 上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80)。 | |||
| 6. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory,并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。 | |||
| > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。 | |||
| @@ -168,9 +168,14 @@ $ cd ragflow/docker | |||
| $ docker compose up -d | |||
| ``` | |||
| ## 🆕 最近新特性 | |||
| - 支持用 [Ollam](./docs/ollama.md) 对大模型进行本地化部署。 | |||
| - 支持中文界面。 | |||
| ## 📜 路线图 | |||
| 详见 [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)。 | |||
| 详见 [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162) 。 | |||
| ## 🏄 开源社区 | |||
| @@ -179,7 +184,7 @@ $ docker compose up -d | |||
| ## 🙌 贡献指南 | |||
| RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md)。 | |||
| RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md) 。 | |||
| ## 👥 加入社区 | |||
| @@ -126,7 +126,7 @@ def message_fit_in(msg, max_length=4000): | |||
| if c < max_length: | |||
| return c, msg | |||
| msg_ = [m for m in msg[:-1] if m.role == "system"] | |||
| msg_ = [m for m in msg[:-1] if m["role"] == "system"] | |||
| msg_.append(msg[-1]) | |||
| msg = msg_ | |||
| c = count() | |||
| @@ -81,7 +81,7 @@ def upload(): | |||
| "parser_id": kb.parser_id, | |||
| "parser_config": kb.parser_config, | |||
| "created_by": current_user.id, | |||
| "type": filename_type(filename), | |||
| "type": filetype, | |||
| "name": filename, | |||
| "location": location, | |||
| "size": len(blob), | |||
| @@ -91,6 +91,57 @@ def set_api_key(): | |||
| return get_json_result(data=True) | |||
| @manager.route('/add_llm', methods=['POST']) | |||
| @login_required | |||
| @validate_request("llm_factory", "llm_name", "model_type") | |||
| def add_llm(): | |||
| req = request.json | |||
| llm = { | |||
| "tenant_id": current_user.id, | |||
| "llm_factory": req["llm_factory"], | |||
| "model_type": req["model_type"], | |||
| "llm_name": req["llm_name"], | |||
| "api_base": req.get("api_base", ""), | |||
| "api_key": "xxxxxxxxxxxxxxx" | |||
| } | |||
| factory = req["llm_factory"] | |||
| msg = "" | |||
| if llm["model_type"] == LLMType.EMBEDDING.value: | |||
| mdl = EmbeddingModel[factory]( | |||
| key=None, model_name=llm["llm_name"], base_url=llm["api_base"]) | |||
| try: | |||
| arr, tc = mdl.encode(["Test if the api key is available"]) | |||
| if len(arr[0]) == 0 or tc == 0: | |||
| raise Exception("Fail") | |||
| except Exception as e: | |||
| msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e) | |||
| elif llm["model_type"] == LLMType.CHAT.value: | |||
| mdl = ChatModel[factory]( | |||
| key=None, model_name=llm["llm_name"], base_url=llm["api_base"]) | |||
| try: | |||
| m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], { | |||
| "temperature": 0.9}) | |||
| if not tc: | |||
| raise Exception(m) | |||
| except Exception as e: | |||
| msg += f"\nFail to access model({llm['llm_name']})." + str( | |||
| e) | |||
| else: | |||
| # TODO: check other type of models | |||
| pass | |||
| if msg: | |||
| return get_data_error_result(retmsg=msg) | |||
| if not TenantLLMService.filter_update( | |||
| [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm): | |||
| TenantLLMService.save(**llm) | |||
| return get_json_result(data=True) | |||
| @manager.route('/my_llms', methods=['GET']) | |||
| @login_required | |||
| def my_llms(): | |||
| @@ -125,6 +176,12 @@ def list(): | |||
| for m in llms: | |||
| m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" | |||
| llm_set = set([m["llm_name"] for m in llms]) | |||
| for o in objs: | |||
| if not o.api_key:continue | |||
| if o.llm_name in llm_set:continue | |||
| llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True}) | |||
| res = {} | |||
| for m in llms: | |||
| if model_type and m["model_type"] != model_type: | |||
| @@ -181,6 +181,10 @@ def user_info(): | |||
| def rollback_user_registration(user_id): | |||
| try: | |||
| UserService.delete_by_id(user_id) | |||
| except Exception as e: | |||
| pass | |||
| try: | |||
| TenantService.delete_by_id(user_id) | |||
| except Exception as e: | |||
| @@ -18,7 +18,7 @@ import time | |||
| import uuid | |||
| from api.db import LLMType, UserTenantRole | |||
| from api.db.db_models import init_database_tables as init_web_db | |||
| from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM | |||
| from api.db.services import UserService | |||
| from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle | |||
| from api.db.services.user_service import TenantService, UserTenantService | |||
| @@ -100,16 +100,16 @@ factory_infos = [{ | |||
| "status": "1", | |||
| }, | |||
| { | |||
| "name": "Local", | |||
| "name": "Ollama", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| }, { | |||
| "name": "Moonshot", | |||
| "name": "Moonshot", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING", | |||
| "status": "1", | |||
| } | |||
| }, | |||
| # { | |||
| # "name": "文心一言", | |||
| # "logo": "", | |||
| @@ -230,20 +230,6 @@ def init_llm_factory(): | |||
| "max_tokens": 512, | |||
| "model_type": LLMType.EMBEDDING.value | |||
| }, | |||
| # ---------------------- 本地 ---------------------- | |||
| { | |||
| "fid": factory_infos[3]["name"], | |||
| "llm_name": "qwen-14B-chat", | |||
| "tags": "LLM,CHAT,", | |||
| "max_tokens": 4096, | |||
| "model_type": LLMType.CHAT.value | |||
| }, { | |||
| "fid": factory_infos[3]["name"], | |||
| "llm_name": "flag-embedding", | |||
| "tags": "TEXT EMBEDDING,", | |||
| "max_tokens": 128 * 1000, | |||
| "model_type": LLMType.EMBEDDING.value | |||
| }, | |||
| # ------------------------ Moonshot ----------------------- | |||
| { | |||
| "fid": factory_infos[4]["name"], | |||
| @@ -282,6 +268,9 @@ def init_llm_factory(): | |||
| except Exception as e: | |||
| pass | |||
| LLMFactoriesService.filter_delete([LLMFactories.name=="Local"]) | |||
| LLMService.filter_delete([LLM.fid=="Local"]) | |||
| """ | |||
| drop table llm; | |||
| drop table llm_factories; | |||
| @@ -295,8 +284,7 @@ def init_llm_factory(): | |||
| def init_web_data(): | |||
| start_time = time.time() | |||
| if LLMFactoriesService.get_all().count() != len(factory_infos): | |||
| init_llm_factory() | |||
| init_llm_factory() | |||
| if not UserService.get_all().count(): | |||
| init_superuser() | |||
| @@ -20,6 +20,7 @@ services: | |||
| - 443:443 | |||
| volumes: | |||
| - ./service_conf.yaml:/ragflow/conf/service_conf.yaml | |||
| - ./entrypoint.sh:/ragflow/entrypoint.sh | |||
| - ./ragflow-logs:/ragflow/logs | |||
| - ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf | |||
| - ./nginx/proxy.conf:/etc/nginx/proxy.conf | |||
| @@ -0,0 +1,40 @@ | |||
| # Ollama | |||
| <div align="center" style="margin-top:20px;margin-bottom:20px;"> | |||
| <img src="https://github.com/infiniflow/ragflow/assets/12318111/2019e7ee-1e8a-412e-9349-11bbf702e549" width="130"/> | |||
| </div> | |||
| One-click deployment of local LLMs, that is [Ollama](https://github.com/ollama/ollama). | |||
| ## Install | |||
| - [Ollama on Linux](https://github.com/ollama/ollama/blob/main/docs/linux.md) | |||
| - [Ollama Windows Preview](https://github.com/ollama/ollama/blob/main/docs/windows.md) | |||
| - [Docker](https://hub.docker.com/r/ollama/ollama) | |||
| ## Launch Ollama | |||
| Decide which LLM you want to deploy ([here's a list for supported LLM](https://ollama.com/library)), say, **mistral**: | |||
| ```bash | |||
| $ ollama run mistral | |||
| ``` | |||
| Or, | |||
| ```bash | |||
| $ docker exec -it ollama ollama run mistral | |||
| ``` | |||
| ## Use Ollama in RAGFlow | |||
| - Go to 'Settings > Model Providers > Models to be added > Ollama'. | |||
| <div align="center" style="margin-top:20px;margin-bottom:20px;"> | |||
| <img src="https://github.com/infiniflow/ragflow/assets/12318111/2019e7ee-1e8a-412e-9349-11bbf702e549" width="130"/> | |||
| </div> | |||
| > Base URL: Enter the base URL where the Ollama service is accessible, like, http://<your-ollama-endpoint-domain>:11434 | |||
| - Use Ollama Models. | |||
| <div align="center" style="margin-top:20px;margin-bottom:20px;"> | |||
| <img src="https://github.com/infiniflow/ragflow/assets/12318111/2019e7ee-1e8a-412e-9349-11bbf702e549" width="130"/> | |||
| </div> | |||
| @@ -19,7 +19,7 @@ from .cv_model import * | |||
| EmbeddingModel = { | |||
| "Local": HuEmbedding, | |||
| "Ollama": OllamaEmbed, | |||
| "OpenAI": OpenAIEmbed, | |||
| "Tongyi-Qianwen": HuEmbedding, #QWenEmbed, | |||
| "ZHIPU-AI": ZhipuEmbed, | |||
| @@ -29,7 +29,7 @@ EmbeddingModel = { | |||
| CvModel = { | |||
| "OpenAI": GptV4, | |||
| "Local": LocalCV, | |||
| "Ollama": OllamaCV, | |||
| "Tongyi-Qianwen": QWenCV, | |||
| "ZHIPU-AI": Zhipu4V, | |||
| "Moonshot": LocalCV | |||
| @@ -40,7 +40,7 @@ ChatModel = { | |||
| "OpenAI": GptTurbo, | |||
| "ZHIPU-AI": ZhipuChat, | |||
| "Tongyi-Qianwen": QWenChat, | |||
| "Local": LocalLLM, | |||
| "Ollama": OllamaChat, | |||
| "Moonshot": MoonshotChat | |||
| } | |||
| @@ -18,6 +18,7 @@ from dashscope import Generation | |||
| from abc import ABC | |||
| from openai import OpenAI | |||
| import openai | |||
| from ollama import Client | |||
| from rag.nlp import is_english | |||
| from rag.utils import num_tokens_from_string | |||
| @@ -129,6 +130,32 @@ class ZhipuChat(Base): | |||
| return "**ERROR**: " + str(e), 0 | |||
| class OllamaChat(Base): | |||
| def __init__(self, key, model_name, **kwargs): | |||
| self.client = Client(host=kwargs["base_url"]) | |||
| self.model_name = model_name | |||
| def chat(self, system, history, gen_conf): | |||
| if system: | |||
| history.insert(0, {"role": "system", "content": system}) | |||
| try: | |||
| options = {"temperature": gen_conf.get("temperature", 0.1), | |||
| "num_predict": gen_conf.get("max_tokens", 128), | |||
| "top_k": gen_conf.get("top_p", 0.3), | |||
| "presence_penalty": gen_conf.get("presence_penalty", 0.4), | |||
| "frequency_penalty": gen_conf.get("frequency_penalty", 0.7), | |||
| } | |||
| response = self.client.chat( | |||
| model=self.model_name, | |||
| messages=history, | |||
| options=options | |||
| ) | |||
| ans = response["message"]["content"].strip() | |||
| return ans, response["eval_count"] | |||
| except Exception as e: | |||
| return "**ERROR**: " + str(e), 0 | |||
| class LocalLLM(Base): | |||
| class RPCProxy: | |||
| def __init__(self, host, port): | |||
| @@ -16,7 +16,7 @@ | |||
| from zhipuai import ZhipuAI | |||
| import io | |||
| from abc import ABC | |||
| from ollama import Client | |||
| from PIL import Image | |||
| from openai import OpenAI | |||
| import os | |||
| @@ -140,6 +140,28 @@ class Zhipu4V(Base): | |||
| return res.choices[0].message.content.strip(), res.usage.total_tokens | |||
| class OllamaCV(Base): | |||
| def __init__(self, key, model_name, lang="Chinese", **kwargs): | |||
| self.client = Client(host=kwargs["base_url"]) | |||
| self.model_name = model_name | |||
| self.lang = lang | |||
| def describe(self, image, max_tokens=1024): | |||
| prompt = self.prompt("") | |||
| try: | |||
| options = {"num_predict": max_tokens} | |||
| response = self.client.generate( | |||
| model=self.model_name, | |||
| prompt=prompt[0]["content"][1]["text"], | |||
| images=[image], | |||
| options=options | |||
| ) | |||
| ans = response["response"].strip() | |||
| return ans, 128 | |||
| except Exception as e: | |||
| return "**ERROR**: " + str(e), 0 | |||
| class LocalCV(Base): | |||
| def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs): | |||
| pass | |||
| @@ -16,13 +16,12 @@ | |||
| from zhipuai import ZhipuAI | |||
| import os | |||
| from abc import ABC | |||
| from ollama import Client | |||
| import dashscope | |||
| from openai import OpenAI | |||
| from FlagEmbedding import FlagModel | |||
| import torch | |||
| import numpy as np | |||
| from huggingface_hub import snapshot_download | |||
| from api.utils.file_utils import get_project_base_directory | |||
| from rag.utils import num_tokens_from_string | |||
| @@ -150,3 +149,24 @@ class ZhipuEmbed(Base): | |||
| res = self.client.embeddings.create(input=text, | |||
| model=self.model_name) | |||
| return np.array(res.data[0].embedding), res.usage.total_tokens | |||
| class OllamaEmbed(Base): | |||
| def __init__(self, key, model_name, **kwargs): | |||
| self.client = Client(host=kwargs["base_url"]) | |||
| self.model_name = model_name | |||
| def encode(self, texts: list, batch_size=32): | |||
| arr = [] | |||
| tks_num = 0 | |||
| for txt in texts: | |||
| res = self.client.embeddings(prompt=txt, | |||
| model=self.model_name) | |||
| arr.append(res["embedding"]) | |||
| tks_num += 128 | |||
| return np.array(arr), tks_num | |||
| def encode_queries(self, text): | |||
| res = self.client.embeddings(prompt=text, | |||
| model=self.model_name) | |||
| return np.array(res["embedding"]), 128 | |||
| @@ -23,7 +23,8 @@ import re | |||
| import sys | |||
| import traceback | |||
| from functools import partial | |||
| import signal | |||
| from contextlib import contextmanager | |||
| from rag.settings import database_logger | |||
| from rag.settings import cron_logger, DOC_MAXIMUM_SIZE | |||
| @@ -97,8 +98,21 @@ def collect(comm, mod, tm): | |||
| cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm)) | |||
| return tasks | |||
| @contextmanager | |||
| def timeout(time): | |||
| # Register a function to raise a TimeoutError on the signal. | |||
| signal.signal(signal.SIGALRM, raise_timeout) | |||
| # Schedule the signal to be sent after ``time``. | |||
| signal.alarm(time) | |||
| yield | |||
| def raise_timeout(signum, frame): | |||
| raise TimeoutError | |||
| def build(row): | |||
| from timeit import default_timer as timer | |||
| if row["size"] > DOC_MAXIMUM_SIZE: | |||
| set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" % | |||
| (int(DOC_MAXIMUM_SIZE / 1024 / 1024))) | |||
| @@ -111,11 +125,14 @@ def build(row): | |||
| row["to_page"]) | |||
| chunker = FACTORY[row["parser_id"].lower()] | |||
| try: | |||
| cron_logger.info( | |||
| "Chunkking {}/{}".format(row["location"], row["name"])) | |||
| cks = chunker.chunk(row["name"], binary=MINIO.get(row["kb_id"], row["location"]), from_page=row["from_page"], | |||
| st = timer() | |||
| with timeout(30): | |||
| binary = MINIO.get(row["kb_id"], row["location"]) | |||
| cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"], | |||
| to_page=row["to_page"], lang=row["language"], callback=callback, | |||
| kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"]) | |||
| cron_logger.info( | |||
| "Chunkking({}) {}/{}".format(timer()-st, row["location"], row["name"])) | |||
| except Exception as e: | |||
| if re.search("(No such file|not found)", str(e)): | |||
| callback(-1, "Can not find file <%s>" % row["name"]) | |||