Browse Source
fix the error 'Unknown field for GenerationConfig: max_tokens' when u… (#8473)
### What problem does this PR solve?
[https://github.com/infiniflow/ragflow/issues/8324](url)
docker image version: v0.19.1
The `_clean_conf` function was not implemented in the `_chat` and
`chat_streamly` methods of the `GeminiChat` class, causing the error
"Unknown field for GenerationConfig: max_tokens" when the default LLM
config includes the "max_tokens" parameter.
**Buggy Code(ragflow/rag/llm/chat_model.py)**
```python
class GeminiChat(Base):
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
from google.generativeai import GenerativeModel, client
client.configure(api_key=key)
_client = client.get_default_generative_client()
self.model_name = "models/" + model_name
self.model = GenerativeModel(model_name=self.model_name)
self.model._client = _client
def _clean_conf(self, gen_conf):
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p"]:
del gen_conf[k]
return gen_conf
def _chat(self, history, gen_conf):
from google.generativeai.types import content_types
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
hist = []
for item in history:
if item["role"] == "system":
continue
hist.append(deepcopy(item))
item = hist[-1]
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "role" in item and item["role"] == "system":
item["role"] = "user"
if "content" in item:
item["parts"] = item.pop("content")
if system:
self.model._system_instruction = content_types.to_content(system)
response = self.model.generate_content(hist, generation_config=gen_conf)
ans = response.text
return ans, response.usage_metadata.total_token_count
def chat_streamly(self, system, history, gen_conf):
from google.generativeai.types import content_types
if system:
self.model._system_instruction = content_types.to_content(system)
#❌_clean_conf was not implemented
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = item.pop("content")
ans = ""
try:
response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
for resp in response:
ans = resp.text
yield ans
yield response._chunks[-1].usage_metadata.total_token_count
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
```
**Implement the _clean_conf function**
```python
class GeminiChat(Base):
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
from google.generativeai import GenerativeModel, client
client.configure(api_key=key)
_client = client.get_default_generative_client()
self.model_name = "models/" + model_name
self.model = GenerativeModel(model_name=self.model_name)
self.model._client = _client
def _clean_conf(self, gen_conf):
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p"]:
del gen_conf[k]
return gen_conf
def _chat(self, history, gen_conf):
from google.generativeai.types import content_types
#✅ implement _clean_conf to remove the wrong parameters
gen_conf = self._clean_conf(gen_conf)
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
hist = []
for item in history:
if item["role"] == "system":
continue
hist.append(deepcopy(item))
item = hist[-1]
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "role" in item and item["role"] == "system":
item["role"] = "user"
if "content" in item:
item["parts"] = item.pop("content")
if system:
self.model._system_instruction = content_types.to_content(system)
response = self.model.generate_content(hist, generation_config=gen_conf)
ans = response.text
return ans, response.usage_metadata.total_token_count
def chat_streamly(self, system, history, gen_conf):
from google.generativeai.types import content_types
#✅ implement _clean_conf to remove the wrong parameters
gen_conf = self._clean_conf(gen_conf)
if system:
self.model._system_instruction = content_types.to_content(system)
#✅Removed duplicate parameter filtering logic "for k in list(gen_conf.keys()):"
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = item.pop("content")
ans = ""
try:
response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
for resp in response:
ans = resp.text
yield ans
yield response._chunks[-1].usage_metadata.total_token_count
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
```
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
---------
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
tags/v0.20.0