| @@ -176,7 +176,7 @@ def chat(dialog, messages, **kwargs): | |||
| if not llm: | |||
| raise LookupError("LLM(%s) not found" % dialog.llm_id) | |||
| llm = llm[0] | |||
| question = messages[-1]["content"] | |||
| questions = [m["content"] for m in messages if m["role"] == "user"] | |||
| embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING) | |||
| chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id) | |||
| @@ -184,7 +184,7 @@ def chat(dialog, messages, **kwargs): | |||
| ## try to use sql if field mapping is good to go | |||
| if field_map: | |||
| stat_logger.info("Use SQL to retrieval.") | |||
| markdown_tbl, chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl) | |||
| markdown_tbl, chunks = use_sql("\n".join(questions), field_map, dialog.tenant_id, chat_mdl) | |||
| if markdown_tbl: | |||
| return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}} | |||
| @@ -195,7 +195,9 @@ def chat(dialog, messages, **kwargs): | |||
| if p["key"] not in kwargs: | |||
| prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ") | |||
| kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, | |||
| for _ in range(len(questions)//2): | |||
| questions.append(questions[-1]) | |||
| kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, | |||
| dialog.similarity_threshold, | |||
| dialog.vector_similarity_weight, top=1024, aggs=False) | |||
| knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]] | |||
| @@ -224,13 +226,14 @@ def chat(dialog, messages, **kwargs): | |||
| def use_sql(question, field_map, tenant_id, chat_mdl): | |||
| sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据我的问题写出sql。" | |||
| sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。" | |||
| user_promt = """ | |||
| 表名:{}; | |||
| 数据库表字段说明如下: | |||
| {} | |||
| 问题:{} | |||
| 问题如下: | |||
| {} | |||
| 请写出SQL,且只要SQL,不要有其他说明及文字。 | |||
| """.format( | |||
| index_name(tenant_id), | |||
| @@ -100,12 +100,14 @@ def github_callback(): | |||
| if len(users) > 1: raise Exception('Same E-mail exist!') | |||
| user = users[0] | |||
| login_user(user) | |||
| return redirect("/?auth=%s"%user.get_id()) | |||
| except Exception as e: | |||
| rollback_user_registration(user_id) | |||
| stat_logger.exception(e) | |||
| return redirect("/?error=%s"%str(e)) | |||
| return redirect("/?auth=%s"%user_id) | |||
| user = users[0] | |||
| login_user(user) | |||
| return redirect("/?auth=%s" % user.get_id()) | |||
| def user_info_from_github(access_token): | |||
| @@ -28,7 +28,7 @@ def main(args): | |||
| images, outputs = init_in_out(args) | |||
| if args.mode.lower() == "layout": | |||
| labels = LayoutRecognizer.labels | |||
| detr = Recognizer(labels, "layout.paper", os.path.join(get_project_base_directory(), "rag/res/deepdoc/")) | |||
| detr = Recognizer(labels, "layout", os.path.join(get_project_base_directory(), "rag/res/deepdoc/")) | |||
| if args.mode.lower() == "tsr": | |||
| labels = TableStructureRecognizer.labels | |||
| detr = TableStructureRecognizer() | |||
| @@ -73,12 +73,13 @@ class Pdf(PdfParser): | |||
| return res | |||
| def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |||
| def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs): | |||
| """ | |||
| The supported file formats are pdf, pptx. | |||
| Every page will be treated as a chunk. And the thumbnail of every page will be stored. | |||
| PPT file will be parsed by using this method automatically, setting-up for every PPT file is not necessary. | |||
| """ | |||
| eng = lang.lower() == "english" | |||
| doc = { | |||
| "docnm_kwd": filename, | |||
| "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | |||
| @@ -98,8 +99,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k | |||
| for pn, (txt,img) in enumerate(pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback)): | |||
| d = copy.deepcopy(doc) | |||
| d["image"] = img | |||
| d["page_num_obj"] = [pn+1] | |||
| tokenize(d, txt, pdf_parser.is_english) | |||
| d["page_num_int"] = [pn+1] | |||
| d["top_int"] = [0] | |||
| d["position_int"].append((pn + 1, 0, img.size[0], 0, img.size[1])) | |||
| tokenize(d, txt, eng) | |||
| res.append(d) | |||
| return res | |||
| @@ -14,9 +14,13 @@ | |||
| # limitations under the License. | |||
| # | |||
| from abc import ABC | |||
| from copy import deepcopy | |||
| from openai import OpenAI | |||
| import openai | |||
| from rag.nlp import is_english | |||
| class Base(ABC): | |||
| def __init__(self, key, model_name): | |||
| @@ -34,13 +38,17 @@ class GptTurbo(Base): | |||
| def chat(self, system, history, gen_conf): | |||
| if system: history.insert(0, {"role": "system", "content": system}) | |||
| try: | |||
| res = self.client.chat.completions.create( | |||
| response = self.client.chat.completions.create( | |||
| model=self.model_name, | |||
| messages=history, | |||
| **gen_conf) | |||
| return res.choices[0].message.content.strip(), res.usage.completion_tokens | |||
| ans = response.output.choices[0]['message']['content'].strip() | |||
| if response.output.choices[0].get("finish_reason", "") == "length": | |||
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |||
| [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" | |||
| return ans, response.usage.completion_tokens | |||
| except openai.APIError as e: | |||
| return "ERROR: "+str(e), 0 | |||
| return "**ERROR**: "+str(e), 0 | |||
| from dashscope import Generation | |||
| @@ -59,9 +67,16 @@ class QWenChat(Base): | |||
| result_format='message', | |||
| **gen_conf | |||
| ) | |||
| ans = "" | |||
| tk_count = 0 | |||
| if response.status_code == HTTPStatus.OK: | |||
| return response.output.choices[0]['message']['content'], response.usage.output_tokens | |||
| return "ERROR: " + response.message, 0 | |||
| ans += response.output.choices[0]['message']['content'] | |||
| tk_count += response.usage.output_tokens | |||
| if response.output.choices[0].get("finish_reason", "") == "length": | |||
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" | |||
| return ans, tk_count | |||
| return "**ERROR**: " + response.message, tk_count | |||
| from zhipuai import ZhipuAI | |||
| @@ -73,11 +88,16 @@ class ZhipuChat(Base): | |||
| def chat(self, system, history, gen_conf): | |||
| from http import HTTPStatus | |||
| if system: history.insert(0, {"role": "system", "content": system}) | |||
| response = self.client.chat.completions.create( | |||
| self.model_name, | |||
| messages=history, | |||
| **gen_conf | |||
| ) | |||
| if response.status_code == HTTPStatus.OK: | |||
| return response.output.choices[0]['message']['content'], response.usage.completion_tokens | |||
| return "ERROR: " + response.message, 0 | |||
| try: | |||
| response = self.client.chat.completions.create( | |||
| self.model_name, | |||
| messages=history, | |||
| **gen_conf | |||
| ) | |||
| ans = response.output.choices[0]['message']['content'].strip() | |||
| if response.output.choices[0].get("finish_reason", "") == "length": | |||
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |||
| [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" | |||
| return ans, response.usage.completion_tokens | |||
| except Exception as e: | |||
| return "**ERROR**: " + str(e), 0 | |||
| @@ -224,12 +224,13 @@ class Dealer: | |||
| chunks_tks, | |||
| tkweight, vtweight) | |||
| mx = np.max(sim) * 0.99 | |||
| if mx < 0.35: | |||
| if mx < 0.66: | |||
| continue | |||
| cites[idx[i]] = list( | |||
| set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4] | |||
| res = "" | |||
| seted = set([]) | |||
| for i, p in enumerate(pieces): | |||
| res += p | |||
| if i not in idx: | |||
| @@ -237,7 +238,10 @@ class Dealer: | |||
| if i not in cites: | |||
| continue | |||
| for c in cites[i]: assert int(c) < len(chunk_v) | |||
| for c in cites[i]: res += f" ##{c}$$" | |||
| for c in cites[i]: | |||
| if c in seted:continue | |||
| res += f" ##{c}$$" | |||
| seted.add(c) | |||
| return res | |||
| @@ -318,7 +322,7 @@ class Dealer: | |||
| if dnm not in ranks["doc_aggs"]: | |||
| ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0} | |||
| ranks["doc_aggs"][dnm]["count"] += 1 | |||
| ranks["doc_aggs"] = [{"doc_name": k, "doc_id": v["doc_id"], "count": v["count"]} for k,v in sorted(ranks["doc_aggs"].items(), key=lambda x:x[1]["count"]*-1)] | |||
| ranks["doc_aggs"] = []#[{"doc_name": k, "doc_id": v["doc_id"], "count": v["count"]} for k,v in sorted(ranks["doc_aggs"].items(), key=lambda x:x[1]["count"]*-1)] | |||
| return ranks | |||