### What problem does this PR solve? #834 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)tags/v0.6.0
| @@ -118,7 +118,7 @@ def chat(dialog, messages, stream=True, **kwargs): | |||
| kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, | |||
| dialog.similarity_threshold, | |||
| dialog.vector_similarity_weight, | |||
| doc_ids=kwargs.get("doc_ids", "").split(","), | |||
| doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None, | |||
| top=1024, aggs=False) | |||
| knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]] | |||
| chat_logger.info( | |||
| @@ -20,6 +20,7 @@ from openai import OpenAI | |||
| import openai | |||
| from ollama import Client | |||
| from rag.nlp import is_english | |||
| from rag.utils import num_tokens_from_string | |||
| class Base(ABC): | |||
| @@ -255,3 +256,46 @@ class OllamaChat(Base): | |||
| except Exception as e: | |||
| yield ans + "\n**ERROR**: " + str(e) | |||
| yield 0 | |||
| class LocalLLM(Base): | |||
| class RPCProxy: | |||
| def __init__(self, host, port): | |||
| self.host = host | |||
| self.port = int(port) | |||
| self.__conn() | |||
| def __conn(self): | |||
| from multiprocessing.connection import Client | |||
| self._connection = Client( | |||
| (self.host, self.port), authkey=b'infiniflow-token4kevinhu') | |||
| def __getattr__(self, name): | |||
| import pickle | |||
| def do_rpc(*args, **kwargs): | |||
| for _ in range(3): | |||
| try: | |||
| self._connection.send( | |||
| pickle.dumps((name, args, kwargs))) | |||
| return pickle.loads(self._connection.recv()) | |||
| except Exception as e: | |||
| self.__conn() | |||
| raise Exception("RPC connection lost!") | |||
| return do_rpc | |||
| def __init__(self, key, model_name="glm-3-turbo"): | |||
| self.client = LocalLLM.RPCProxy("127.0.0.1", 7860) | |||
| def chat(self, system, history, gen_conf): | |||
| if system: | |||
| history.insert(0, {"role": "system", "content": system}) | |||
| try: | |||
| ans = self.client.chat( | |||
| history, | |||
| gen_conf | |||
| ) | |||
| return ans, num_tokens_from_string(ans) | |||
| except Exception as e: | |||
| return "**ERROR**: " + str(e), 0 | |||
| @@ -2,9 +2,10 @@ import argparse | |||
| import pickle | |||
| import random | |||
| import time | |||
| from copy import deepcopy | |||
| from multiprocessing.connection import Listener | |||
| from threading import Thread | |||
| from transformers import AutoModelForCausalLM, AutoTokenizer | |||
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer | |||
| def torch_gc(): | |||
| @@ -95,6 +96,32 @@ def chat(messages, gen_conf): | |||
| return str(e) | |||
| def chat_streamly(messages, gen_conf): | |||
| global tokenizer | |||
| model = Model() | |||
| try: | |||
| torch_gc() | |||
| conf = deepcopy(gen_conf) | |||
| print(messages, conf) | |||
| text = tokenizer.apply_chat_template( | |||
| messages, | |||
| tokenize=False, | |||
| add_generation_prompt=True | |||
| ) | |||
| model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |||
| streamer = TextStreamer(tokenizer) | |||
| conf["inputs"] = model_inputs.input_ids | |||
| conf["streamer"] = streamer | |||
| conf["max_new_tokens"] = conf["max_tokens"] | |||
| del conf["max_tokens"] | |||
| thread = Thread(target=model.generate, kwargs=conf) | |||
| thread.start() | |||
| for _, new_text in enumerate(streamer): | |||
| yield new_text | |||
| except Exception as e: | |||
| yield "**ERROR**: " + str(e) | |||
| def Model(): | |||
| global models | |||
| random.seed(time.time()) | |||
| @@ -113,6 +140,7 @@ if __name__ == "__main__": | |||
| handler = RPCHandler() | |||
| handler.register_function(chat) | |||
| handler.register_function(chat_streamly) | |||
| models = [] | |||
| for _ in range(1): | |||
| @@ -36,7 +36,7 @@ class EsQueryer: | |||
| patts = [ | |||
| (r"是*(什么样的|哪家|一下|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""), | |||
| (r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "), | |||
| (r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down)", " ") | |||
| (r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down) ", " ") | |||
| ] | |||
| for r, p in patts: | |||
| txt = re.sub(r, p, txt, flags=re.IGNORECASE) | |||
| @@ -44,7 +44,7 @@ class EsQueryer: | |||
| def question(self, txt, tbl="qa", min_match="60%"): | |||
| txt = re.sub( | |||
| r"[ \r\n\t,,。??/`!!&]+", | |||
| r"[ \r\n\t,,。??/`!!&\^%%]+", | |||
| " ", | |||
| rag_tokenizer.tradi2simp( | |||
| rag_tokenizer.strQ2B( | |||
| @@ -53,9 +53,10 @@ class EsQueryer: | |||
| if not self.isChinese(txt): | |||
| tks = rag_tokenizer.tokenize(txt).split(" ") | |||
| q = copy.deepcopy(tks) | |||
| for i in range(1, len(tks)): | |||
| q.append("\"%s %s\"^2" % (tks[i - 1], tks[i])) | |||
| tks_w = self.tw.weights(tks) | |||
| q = [re.sub(r"[ \\\"']+", "", tk)+"^{:.4f}".format(w) for tk, w in tks_w] | |||
| for i in range(1, len(tks_w)): | |||
| q.append("\"%s %s\"^%.4f" % (tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1])*2)) | |||
| if not q: | |||
| q.append(txt) | |||
| return Q("bool", | |||